Siderophore-Mediated Interactions Determine the Disease Suppressiveness of Microbial Consortia.
Siderophore
microbial interactions
plant health
plant pathogens
soil microbiology
Journal
mSystems
ISSN: 2379-5077
Titre abrégé: mSystems
Pays: United States
ID NLM: 101680636
Informations de publication
Date de publication:
30 Jun 2020
30 Jun 2020
Historique:
entrez:
2
7
2020
pubmed:
2
7
2020
medline:
2
7
2020
Statut:
epublish
Résumé
Interactions between plant pathogens and root-associated microbes play an important role in determining disease outcomes. While several studies have suggested that steering these interactions may improve plant health, such approaches have remained challenging in practice. Because of low iron availability in most soils, competition for iron via secreted siderophore molecules might influence microbial interaction outcomes. Here, we tested if bacterial interactions mediated by iron-scavenging siderophores can be used to predict the disease suppressiveness of microbial consortia against soilborne
Identifiants
pubmed: 32606030
pii: 5/3/e00811-19
doi: 10.1128/mSystems.00811-19
pmc: PMC7329327
pii:
doi:
Types de publication
Journal Article
Langues
eng
Informations de copyright
Copyright © 2020 Gu et al.
Références
Proc Biol Sci. 2002 Nov 7;269(1506):2277-83
pubmed: 12427320
Nature. 2004 Aug 26;430(7003):1024-7
pubmed: 15329720
Cell Host Microbe. 2013 May 15;13(5):509-519
pubmed: 23684303
Ecol Lett. 2013 Jun;16(6):807-20
pubmed: 23452227
Evolution. 2017 Jun;71(6):1443-1455
pubmed: 28323325
Science. 1997 Jul 25;277(5325):504-9
pubmed: 20662149
FEMS Microbiol Rev. 2003 Jun;27(2-3):215-37
pubmed: 12829269
Proc Biol Sci. 2018 Dec 19;285(1893):20182035
pubmed: 30963908
Annu Rev Microbiol. 2000;54:881-941
pubmed: 11018148
mBio. 2016 Dec 13;7(6):
pubmed: 27965449
Front Microbiol. 2018 Dec 11;9:3047
pubmed: 30619138
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18921-6
pubmed: 20944065
Nature. 2004 Feb 19;427(6976):731-3
pubmed: 14973484
Nat Commun. 2015 Sep 24;6:8413
pubmed: 26400552
Annu Rev Phytopathol. 1993;31:53-80
pubmed: 18643761
Environ Microbiol. 2018 Oct;20(10):3629-3642
pubmed: 30003663
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20059-64
pubmed: 23169633
ISME J. 2018 Jun;12(6):1496-1507
pubmed: 29520025
Free Radic Biol Med. 2017 Apr;105:68-78
pubmed: 27780750
ISME J. 2017 Nov;11(11):2492-2509
pubmed: 28696423
Microbiol Mol Biol Rev. 2007 Sep;71(3):413-51
pubmed: 17804665
Ecol Lett. 2011 Nov;14(11):1108-16
pubmed: 21884563
Trends Microbiol. 2015 Nov;23(11):719-729
pubmed: 26439296
J Bacteriol. 2005 Mar;187(6):2138-47
pubmed: 15743962
PLoS One. 2012;7(4):e34591
pubmed: 22514641
Nat Microbiol. 2020 May 11;:
pubmed: 32393858
Nat Commun. 2011 Dec 13;2:589
pubmed: 22158444
Nat Rev Microbiol. 2010 Jan;8(1):15-25
pubmed: 19946288
Nature. 2016 Jul 06;535(7610):85-93
pubmed: 27383983
Environ Microbiol. 2017 Aug;19(8):2984-2991
pubmed: 28229529
Trends Plant Sci. 2012 Aug;17(8):478-86
pubmed: 22564542
Evolution. 2017 Oct;71(10):2484-2495
pubmed: 28833073
Trends Ecol Evol. 2007 Apr;22(4):198-204
pubmed: 17275948
Anal Biochem. 1987 Jan;160(1):47-56
pubmed: 2952030
J Evol Biol. 2009 Mar;22(3):589-98
pubmed: 19170825
J Adv Res. 2019 Mar 20;19:29-37
pubmed: 31341667
Ecol Lett. 2012 May;15(5):468-74
pubmed: 22394557
FEMS Microbiol Rev. 2015 Jul;39(4):592-630
pubmed: 25862688
Ecol Lett. 2019 Jan;22(1):149-158
pubmed: 30460736
Annu Rev Microbiol. 2004;58:611-47
pubmed: 15487950
Nat Ecol Evol. 2019 Mar;3(3):430-439
pubmed: 30718852
Trends Mol Med. 2016 Dec;22(12):1077-1090
pubmed: 27825668
Nat Rev Microbiol. 2004 Dec;2(12):946-53
pubmed: 15550940
Nature. 2009 May 14;459(7244):193-9
pubmed: 19444205
Front Microbiol. 2018 Apr 24;9:781
pubmed: 29740414
FEMS Microbiol Lett. 2005 Mar 1;244(1):199-205
pubmed: 15727841
FEMS Microbiol Ecol. 2009 Apr;68(1):1-13
pubmed: 19243436
Nat Commun. 2017 Sep 4;8(1):414
pubmed: 28871205
Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10756-61
pubmed: 26240352