AFF4 regulates osteogenic differentiation of human dental follicle cells.
Journal
International journal of oral science
ISSN: 2049-3169
Titre abrégé: Int J Oral Sci
Pays: India
ID NLM: 101504351
Informations de publication
Date de publication:
30 06 2020
30 06 2020
Historique:
received:
31
12
2019
accepted:
23
02
2020
revised:
21
02
2020
entrez:
2
7
2020
pubmed:
2
7
2020
medline:
18
9
2020
Statut:
epublish
Résumé
As a member of the AFF (AF4/FMR2) family, AFF4 is a transcription elongation factor that is a component of the super elongation complex. AFF4 serves as a scaffolding protein that connects transcription factors and promotes gene transcription through elongation and chromatin remodelling. Here, we investigated the effect of AFF4 on human dental follicle cells (DFCs) in osteogenic differentiation. In this study, we found that small interfering RNA-mediated depletion of AFF4 resulted in decreased alkaline phosphatase (ALP) activity and impaired mineralization. In addition, the expression of osteogenic-related genes (DLX5, SP7, RUNX2 and BGLAP) was significantly downregulated. In contrast, lentivirus-mediated overexpression of AFF4 significantly enhanced the osteogenic potential of human DFCs. Mechanistically, we found that both the mRNA and protein levels of ALKBH1, a critical regulator of epigenetics, changed in accordance with AFF4 expression levels. Overexpression of ALKBH1 in AFF4-depleted DFCs partially rescued the impairment of osteogenic differentiation. Our data indicated that AFF4 promoted the osteogenic differentiation of DFCs by upregulating the transcription of ALKBH1.
Identifiants
pubmed: 32606293
doi: 10.1038/s41368-020-0083-9
pii: 10.1038/s41368-020-0083-9
pmc: PMC7327054
doi:
Substances chimiques
AFF4 protein, human
0
Biomarkers
0
Repressor Proteins
0
Transcription Factors
0
Transcriptional Elongation Factors
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
20Références
Chung, M., York, B. R. & Michaud, D. S. Oral health and cancer. Curr. Oral. Health Rep.6, 130–137 (2019).
pubmed: 31871854
pmcid: 6927401
Marchesan, J. T. et al. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics. Periodontol 200082, 93–114 (2020).
pubmed: 31850638
Carmagnola, D., Pellegrini, G., Dellavia, C., Rimondini, L. & Varoni, E. Tissue engineering in periodontology: Biological mediators for periodontal regeneration. Int. J. Artif. Organs42, 241–257 (2019).
pubmed: 30935276
Campanella, V. Dental stem cells: current research and future applications. Eur. J. Paediatr. Dent.19, 257 (2018).
pubmed: 30567439
Liu, J. et al. Dental follicle cells rescue the regenerative capacity of periodontal ligament stem cells in an inflammatory microenvironment. PLoS ONE9, e108752 (2014).
pubmed: 25275580
pmcid: 4183515
Cahill, D. R. & Marks, S. C. Jr Tooth eruption: evidence for the central role of the dental follicle. J. Oral. Pathol.9, 189–200 (1980).
pubmed: 6777476
Guo, W. et al. Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials33, 1291–1302 (2012).
pubmed: 22088889
Felthaus, O., Gosau, M., Ettl, T., Prantl, L. & Morsczeck, C. Migration of human dental follicle cells in vitro. J. Periodontal Res.49, 205–212 (2014).
pubmed: 23710611
Suzuki, A. et al. Daily low-intensity pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts. Acta Biochim Biophys. Sin. (Shanghai)41, 108–115 (2009).
Zheng, C., Chen, J., Liu, S. & Jin, Y. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int. J. Oral. Sci.11, 23 (2019).
pubmed: 31423011
pmcid: 6802669
Fernandes, G. & Yang, S. Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering. Bone Res.4, 16036 (2016).
pubmed: 28018706
pmcid: 5153571
Xu, L. et al. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Crit. Rev. Biochem. Mol. Biol.50, 503–519 (2015).
pubmed: 26392149
pmcid: 4891981
Birkenheuer, C. H. & Baines, J. D. RNA polymerase II promoter proximal pausing and release to elongation are key steps regulating herpes simplex virus 1 transcription. J. Virol.94, e02035-19 (2019).
Peterlin, B. M. & Price, D. H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell23, 297–305 (2006).
pubmed: 16885020
Ehara, H. et al. Structural insight into nucleosome transcription by RNA polymerase II with elongation factors. Science363, 744–747 (2019).
pubmed: 30733384
Chen, F. X. et al. PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II. Cell162, 1003–1015 (2015).
pubmed: 26279188
pmcid: 4679144
Knutson, B. A., Smith, M. L., Walker-Kopp, N. & Xu, X. Super elongation complex contains a TFIIF-related subcomplex. Transcription7, 133–140 (2016).
pubmed: 27223670
pmcid: 4984678
Lin, C. et al. Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC). Genes Dev.25, 1486–1498 (2011).
pubmed: 21764852
pmcid: 3143939
Luo, Z. et al. The super elongation complex family of RNA polymerase II elongation factors: gene target specificity and transcriptional output. Mol. Cell Biol.32, 2608–2617 (2012).
pubmed: 22547686
pmcid: 3434493
Melko, M. et al. Functional characterization of the AFF (AF4/FMR2) family of RNA-binding proteins: insights into the molecular pathology of FRAXE intellectual disability. Hum. Mol. Genet.20, 1873–1885 (2011).
pubmed: 21330300
Schulze-Gahmen, U. et al. The AFF4 scaffold binds human P-TEFb adjacent to HIV Tat. Elife2, e00327 (2013).
pubmed: 23471103
pmcid: 3589825
Kuzmina, A., Krasnopolsky, S. & Taube, R. Super elongation complex promotes early HIV transcription and its function is modulated by P-TEFb. Transcription8, 133–149 (2017).
pubmed: 28340332
pmcid: 5501376
Zhou, C. C. et al. AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs. Bone Res.5, 17044 (2017).
pubmed: 28955517
pmcid: 5613922
Zhou, C., Liu, Y., Li, X., Zou, J. & Zou, S. DNA N(6)-methyladenine demethylase ALKBH1 enhances osteogenic differentiation of human MSCs. Bone Res.4, 16033 (2016).
pubmed: 27785372
pmcid: 5057179
Asa’ad, F., Monje, A. & Larsson, L. Role of epigenetics in alveolar bone resorption and regeneration around periodontal and peri-implant tissues. Eur. J. Oral. Sci.127, 477–493 (2019).
pubmed: 31701573
Acil, Y. et al. Isolation, characterization and investigation of differentiation potential of human periodontal ligament cells and dental follicle progenitor cells and their response to BMP-7 in vitro. Odontology104, 123–135 (2016).
pubmed: 25757659
Morsczeck, C. & Reichert, T. E. Dental stem cells in tooth regeneration and repair in the future. Expert Opin. Biol. Ther.18, 187–196 (2018).
pubmed: 29110535
Bok, J. S. et al. The Role of Human Umbilical Vein Endothelial Cells in Osteogenic Differentiation of Dental Follicle-Derived Stem Cells in In Vitro Co-cultures. Int. J. Med. Sci.15, 1160–1170 (2018).
pubmed: 30123053
pmcid: 6097253
Allepuz-Fuster, P. et al. RNA polymerase II plays an active role in the formation of gene loops through the Rpb4 subunit. Nucleic Acids Res.47, 8975–8987 (2019).
pubmed: 31304538
pmcid: 6753479
Chen, Y. et al. Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data. BMC Genomics12, 544 (2011).
pubmed: 22047616
pmcid: 3228824
Lu, H. et al. Gene target specificity of the Super Elongation Complex (SEC) family: how HIV-1 Tat employs selected SEC members to activate viral transcription. Nucleic Acids Res.43, 5868–5879 (2015).
pubmed: 26007649
pmcid: 4499153
Chen, Y. & Cramer, P. Structure of the super-elongation complex subunit AFF4 C-terminal homology domain reveals requirements for AFF homo- and heterodimerization. J. Biol. Chem.294, 10663–10673 (2019).
pubmed: 31147444
Dahlberg, O., Shilkova, O., Tang, M., Holmqvist, P. H. & Mannervik, M. P-TEFb, the super elongation complex and mediator regulate a subset of non-paused genes during early Drosophila embryo development. PLoS Genet.11, e1004971 (2015).
pubmed: 25679530
pmcid: 4334199
Krasnopolsky, S. et al. Fused in sarcoma silences HIV gene transcription and maintains viral latency through suppressing AFF4 gene activation. Retrovirology16, 16 (2019).
pubmed: 31238957
pmcid: 6593535
Christott, T. et al. Discovery of a selective Inhibitor for the YEATS domains of ENL/AF9. SLAS Discov.24, 133–141 (2019).
pubmed: 30359161
Monroe, S. C. et al. MLL-AF9 and MLL-ENL alter the dynamic association of transcriptional regulators with genes critical for leukemia. Exp. Hematol.39, 77–86 (2011). e71-75.
pubmed: 20854876
Taki, T. et al. AF5q31, a newly identified AF4-related gene, is fused to MLL in infant acute lymphoblastic leukemia with ins(5;11)(q31;q13q23). Proc. Natl Acad. Sci. USA96, 14535–14540 (1999).
pubmed: 10588740
Stevens, S. J. et al. A translocation in acute lymphoblastic leukemia that cytogenetically mimics the recurrent MLL-AFF1 translocation and fuses SEPT11 to MLL. Cancer Genet. Cytogenet201, 48–51 (2010).
pubmed: 20633769
Yuva-Aydemir, Y., Almeida, S., Krishnan, G., Gendron, T. F. & Gao, F. B. Transcription elongation factor AFF2/FMR2 regulates expression of expanded GGGGCC repeat-containing C9ORF72 allele in ALS/FTD. Nat. Commun.10, 5466 (2019).
pubmed: 31784536
pmcid: 6884579
Metsu, S. et al. FRA2A is a CGG repeat expansion associated with silencing of AFF3. PLoS Genet.10, e1004242 (2014).
pubmed: 24763282
pmcid: 3998887
Chou, S. et al. HIV-1 Tat recruits transcription elongation factors dispersed along a flexible AFF4 scaffold. Proc. Natl Acad. Sci. USA110, E123–E131 (2013).
pubmed: 23251033
Deng, P. et al. AFF4 promotes tumorigenesis and tumor-initiation capacity of head and neck squamous cell carcinoma cells by regulating SOX2. Carcinogenesis39, 937–947 (2018).
pubmed: 29741610
pmcid: 6031063
Markopoulos, G. S., Roupakia, E., Marcu, K. B. & Kolettas, E. Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-To-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells8, 1143 (2019).
pmcid: 6829508
Eslaminejad, M. B., Fani, N. & Shahhoseini, M. Epigenetic regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in culture. Cell J.15, 1–10 (2013).
pubmed: 23700555
pmcid: 3660019
Ougland, R. et al. Role of ALKBH1 in the core transcriptional network of embryonic stem cells. Cell Physiol. Biochem.38, 173–184 (2016).
pubmed: 26765775
Muller, T. A., Struble, S. L., Meek, K. & Hausinger, R. P. Characterization of human AlkB homolog 1 produced in mammalian cells and demonstration of mitochondrial dysfunction in ALKBH1-deficient cells. Biochem. Biophys. Res. Commun.495, 98–103 (2018).
pubmed: 29097205
Deng, P., Chen, Q. M., Hong, C. & Wang, C. Y. Histone methyltransferases and demethylases: regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells. Int. J. Oral. Sci.7, 197–204 (2015).
pubmed: 26674421
pmcid: 5153596
Liang, Z. et al. DNA N(6)-Adenine Methylation in Arabidopsis thaliana. Dev. Cell45, 406–416 e403 (2018).
pubmed: 29656930
Pan, Z. et al. Impaired placental trophoblast lineage differentiation in Alkbh1(-/-) mice. Dev. Dyn.237, 316–327 (2008).
pubmed: 18163532
Guo, Y. C. et al. Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling. EMBO J.37, e99398 (2018).
pubmed: 30181118
pmcid: 6187217
Liu, W. et al. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. Nat. Commun.7, 12794 (2016).
pubmed: 27653144
pmcid: 5036163
Wu, Y. et al. Mettl3-mediated m(6)A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat. Commun.9, 4772 (2018).
pubmed: 30429466
pmcid: 6235890