Advent of extreme events in predator populations.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 06 2020
30 06 2020
Historique:
received:
19
02
2020
accepted:
05
06
2020
entrez:
2
7
2020
pubmed:
2
7
2020
medline:
18
12
2020
Statut:
epublish
Résumé
We study the dynamics of a ring of patches with vegetation-prey-predator populations, coupled through interactions of the Lotka-Volterra type. We find that the system yields aperiodic, recurrent and rare explosive bursts of predator density in a few isolated spatial patches from time to time. Further, the global predator biomass also exhibits sudden uncorrelated occurrences of large deviations from the mean as the coupled system evolves. The maximum value of the predator population in a patch, as well as the maximum value of the predator biomass, increases with coupling strength. These trends are further corroborated by fits to Generalized Extreme Value distributions, where the location and scale factor of the distribution increases markedly with coupling strength, indicating the crucial role of coupling interactions in the generation of extreme events. These results indicate how occurrences of extremely large predator populations can emerge in coupled population dynamics, and in a more general context they suggest a generic class of deterministic nonlinear systems that can naturally exhibit extreme events.
Identifiants
pubmed: 32606337
doi: 10.1038/s41598-020-67517-1
pii: 10.1038/s41598-020-67517-1
pmc: PMC7327084
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10613Références
Albeverio, S., Jentsch, V. & Kantz, H. Extreme Events in Nature and Society (Springer, Berlin, 2006).
doi: 10.1007/3-540-28611-X
Lubchenco, J. & Karl, T. R. extreme weather events. Phys. Today 65, 31 (2012).
doi: 10.1063/PT.3.1475
Dysthe, K., Krogstad, H. E. & Müller, P. Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008).
doi: 10.1146/annurev.fluid.40.111406.102203
Lillo, F. & Mantegna, R. N. Power-law relaxation in a complex system: Omori law after a financial market crash. Phys. Rev. E 68, 016119 (2003).
doi: 10.1103/PhysRevE.68.016119
Kinney, R., Crucitti, P., Albert, R. & Latora, V. Modeling cascading failures in the north american power grid. Eur. Phys. J. B Condens. Matter Complex Syst. 46, 101–107 (2005).
doi: 10.1140/epjb/e2005-00237-9
Strogatz, S. How the blackout came to life. The New York Times Op. Ed., (25 August 2003).
Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).
doi: 10.1038/nature06402
Moitra, P. & Sinha, S. Emergence of extreme events in networks of parametrically coupled chaotic populations. Chaos Interdiscip. J. Nonlinear Sci. 29, 023131 (2019).
doi: 10.1063/1.5063926
Majumdar, S. N. & Ziff, R. M. Universal record statistics of random walks and lévy flights. Phys. Rev. Lett. 101, 050601 (2008).
doi: 10.1103/PhysRevLett.101.050601
Schehr, G. & Majumdar, S. N. Universal order statistics of random walks. Phys. Rev. Lett. 108, 040601 (2012).
doi: 10.1103/PhysRevLett.108.040601
Kishore, V., Santhanam, M. & Amritkar, R. Extreme events on complex networks. Phys. Rev. Lett. 106, 188701 (2011).
doi: 10.1103/PhysRevLett.106.188701
Ansmann, G., Karnatak, R., Lehnertz, K. & Feudel, U. Extreme events in excitable systems and mechanisms of their generation. Phys. Rev. E 88, 052911 (2013).
doi: 10.1103/PhysRevE.88.052911
Karnatak, R., Ansmann, G., Feudel, U. & Lehnertz, K. Route to extreme events in excitable systems. Phys. Rev. E 90, 022917 (2014).
doi: 10.1103/PhysRevE.90.022917
Kingston, S. L., Thamilmaran, K., Pal, P., Feudel, U. & Dana, S. K. Extreme events in the forced liénard system. Phys. Rev. E 96, 052204 (2017).
doi: 10.1103/PhysRevE.96.052204
Blasius, B., Huppert, A. & Stone, L. Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399, 354–359 (1999).
doi: 10.1038/20676
Karnatak, R., Ramaswamy, R. & Feudel, U. Conjugate coupling in ecosystems: cross-predation stabilizes food webs. Chaos Solit. Fract. 68, 48–57 (2014).
doi: 10.1016/j.chaos.2014.07.003
Balakrishnan, V., Nicolis, C. & Nicolis, G. Extreme value distributions in chaotic dynamics. J. Stat. Phys. 80, 307–336 (1995).
doi: 10.1007/BF02178361
Nicolis, C., Balakrishnan, V. & Nicolis, G. Extreme events in deterministic dynamical systems. Phys. Rev. Lett. 97, 210602 (2006).
doi: 10.1103/PhysRevLett.97.210602
Coles, S. An Introduction to Statistical Modeling of Extreme Values (Springer, Berlin, 2001).
doi: 10.1007/978-1-4471-3675-0
Goodwin, R. M. A growth cycle. In Essays in Economic Dynamics (Palgrave Macmillan, London, 1982).