Combined and independent effects of hypoxia and tributyltin on mRNA expression and physiology of the Eastern oyster (Crassostrea virginica).
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 06 2020
30 06 2020
Historique:
received:
20
03
2020
accepted:
08
06
2020
entrez:
2
7
2020
pubmed:
2
7
2020
medline:
18
12
2020
Statut:
epublish
Résumé
Oyster reefs are vital to estuarine health, but they experience multiple stressors and globally declining populations. This study examined effects of hypoxia and tributyltin (TBT) on adult Eastern oysters (Crassostrea virginica) exposed either in the laboratory or the field following a natural hypoxic event. In the laboratory, oysters were exposed to either hypoxia followed by a recovery period, or to hypoxia combined with TBT. mRNA expression of HIF1-α and Tβ-4 along with hemocyte counts, biomarkers of hypoxic stress and immune health, respectively, were measured. In field-deployed oysters, HIF1-α and Tβ-4 expression increased, while no effect on hemocytes was observed. In contrast, after 6 and 8 days of laboratory-based hypoxia exposure, both Tβ-4 expression and hemocyte counts declined. After 8 days of exposure to hypoxia + TBT, oysters substantially up-regulated HIF1-α and down-regulated Tβ-4, although hemocyte counts were unaffected. Results suggest that hypoxic exposure induces immunosuppression which could increase vulnerability to pathogens.
Identifiants
pubmed: 32606384
doi: 10.1038/s41598-020-67650-x
pii: 10.1038/s41598-020-67650-x
pmc: PMC7327041
doi:
Substances chimiques
Hypoxia-Inducible Factor 1, alpha Subunit
0
RNA, Messenger
0
Trialkyltin Compounds
0
tributyltin
4XDX163P3D
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
10605Références
Gutiérrez, J. L., Jones, C. G., Strayer, D. L. & Iribane, O. O. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101, 79–90. https://doi.org/10.1034/j.1600-0706.2003.12322.x (2003).
doi: 10.1034/j.1600-0706.2003.12322.x
Tunnell, J. W. Shellfish of the Gulf of Mexico. In Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill (ed. Ward, C.) 769–839 (Springer, New York, 2017).
doi: 10.1007/978-1-4939-3447-8_8
Beck, M. W. et al. Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61, 107–116. https://doi.org/10.1525/bio.2011.61.2.5 (2011).
doi: 10.1525/bio.2011.61.2.5
Cressman, K. A., Posey, M. H., Mallin, M. A., Leonard, L. A. & Alphin, T. D. Effects of oyster reefs on water quality in tidal creek estuary. J. Shellfish Res. 22, 753–762 (2003).
Grabowski, J. & Peterson, C. Restoring oyster reefs to recover ecosystem services. Theor. Ecol. Ser. 4, 2003. https://doi.org/10.1016/S1875-306X(07)80017-7 (2007).
doi: 10.1016/S1875-306X(07)80017-7
Peterson, C. H., Grabowski, J. H. & Powers, S. P. Estimated enhancement of fish production resulting from restoring oyster reef habitat: quantitative valuation. Mar. Ecol. Prog. Ser. 264, 249–264. https://doi.org/10.3354/meps264249 (2003).
doi: 10.3354/meps264249
Grabowski, J. H. et al. Economic valuation of ecosystem services provided by oyster reefs. Bioscience 62, 900–909. https://doi.org/10.1525/bio.2012.62.10.10 (2012).
doi: 10.1525/bio.2012.62.10.10
Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637. https://doi.org/10.1126/science.1059199 (2001).
doi: 10.1126/science.1059199
pubmed: 11474098
Lemasson, A. J., Fletcher, S., Hall-Spencer, J. M. & Knights, A. M. Linking the biological impacts of ocean acidification on oysters to changes in ecosystem services: a review. J. Exp. Mar. Bio. Ecol. 492, 49–62. https://doi.org/10.1016/j.jembe.2017.01.019 (2017).
doi: 10.1016/j.jembe.2017.01.019
Overstreet, R. M. & Hawkins, W. E. Diseases and mortalities of fishes and other animals in The Gulf of Mexico. In Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill (ed. Ward, C.) 1589–1738 (Springer, New York, 2017).
doi: 10.1007/978-1-4939-3456-0_6
Lau, Y. T., Santos, B., Barbosa, M., Pales Espinosa, E. & Allam, B. Regulation of apoptosis-related genes during interactions between oyster hemocytes and the alveolate parasite Perkinsus marinus. Fish Shellf. Immunol. 83, 180–189 (2018).
doi: 10.1016/j.fsi.2018.09.006
Lewis, M. & Chancy, C. A summary of total mercury concentrations in flora and fauna near common contaminant sources in the Gulf of Mexico. Chemosphere 70, 2016–2024. https://doi.org/10.1016/j.chemosphere.2007.09.020 (2008).
doi: 10.1016/j.chemosphere.2007.09.020
pubmed: 17980902
Ko, G. W. K. et al. Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the pacific oyster. Environ. Sci. Technol. 48, 10079–10088. https://doi.org/10.1021/es501611u (2014).
doi: 10.1021/es501611u
pubmed: 25014366
Gamain, P. et al. Combined effects of pollutants and salinity on embryo-larval development of the Pacific oyster. Crassostrea gigas. Mar. Environ. Res. 113, 31–38. https://doi.org/10.1016/j.marenvres.2015.11.002 (2016).
doi: 10.1016/j.marenvres.2015.11.002
pubmed: 26583531
Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359(6371), 1–11. https://doi.org/10.1126/science.aam7240 (2018).
doi: 10.1126/science.aam7240
Rabalais, N. N., Turner, R. E. & Scavia, D. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. Bioscience 52, 129. https://doi.org/10.1641/0006-3568(2002)052[0129:bsipgo]2.0.co;2 (2006).
doi: 10.1641/0006-3568(2002)052[0129:bsipgo]2.0.co;2
Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity: supporting documentation. Proc. Natl. Acad. Sci. USA 105, 135–141 (2008).
doi: 10.1073/pnas.0803833105
Khan, B., Clinton, S. M., Hamp, T. J., Oliver, J. D. & Ringwood, A. H. Potential impacts of hypoxia and a warming ocean on oyster microbiomes. Mar. Environ. Res. 139, 27–34. https://doi.org/10.1016/j.marenvres.2018.04.018 (2018).
doi: 10.1016/j.marenvres.2018.04.018
pubmed: 29753492
Baker, S. M. & Mann, R. Effects of hypoxia and anoxia on larval settlement, juvenile growth, and juvenile survival of the oyster Crassostrea virginica. Biol. Bull. 182, 265–269. https://doi.org/10.2307/1542120 (1992).
doi: 10.2307/1542120
pubmed: 29303670
Johnson, M. W., Powers, S. P., Senne, J. & Park, K. Assessing in situ tolerances of Eastern Oysters (Crassostrea virginica) under moderate hypoxic regimes: Implications for restoration. J. Shellfish Res. 28, 185–192. https://doi.org/10.2983/035.028.0202 (2009).
doi: 10.2983/035.028.0202
Shumway, S. E. Natural environmental factors. In The Eastern Oyster (eds Kennedy, V. S. et al.) 467–513 (Maryland Sea Grant, Crassostrea virginica, 1996).
Sui, Y. et al. Effects of short-term hypoxia and seawater acidification on hemocyte responses of the mussel Mytilus coruscus. Marine Pollut. Bull. 108, 46–52. https://doi.org/10.1016/j.marpolbul.2016.05.001 (2016).
doi: 10.1016/j.marpolbul.2016.05.001
Antizar-Ladislao, B. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment: a review. Environ. Int. 34, 292–308. https://doi.org/10.1016/j.envint.2007.09.005 (2008).
doi: 10.1016/j.envint.2007.09.005
pubmed: 17959247
Champ, M. A. & Seligman, P. F. O. Environmental fate and effects. J. Mar. Biol. Assoc. United Kingdom 77, 917. https://doi.org/10.1017/S0025315400036316 (1997).
doi: 10.1017/S0025315400036316
His, E., Heyvang, I., Geffard, O. & De Montaudouin, X. A comparison between oyster (Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassays for toxicological studies. Water Res. 33, 1706–1718. https://doi.org/10.1016/S0043-1354(98)00381-9 (1999).
doi: 10.1016/S0043-1354(98)00381-9
Fisher, W. S., Oliver, L. M., Walker, W. W., Manning, C. S. & Lytle, T. F. Decreased resistance of eastern oysters (Crassostrea virginica) to a protozoan pathogen (Perkinsus marinus) after sublethal exposure to tributyltin oxide. Mar. Environ. Res. 47, 185–201. https://doi.org/10.1016/S0141-1136(98)00114-7 (1999).
doi: 10.1016/S0141-1136(98)00114-7
Lagadic, L. et al. Tributyltin: advancing the science on assessing endocrine disruption with an unconventional endocrine-disrupting compound. Rev. of Environ. Contamin. Toxicol. 245, 65–127. https://doi.org/10.1007/398_2017_8 (2018).
doi: 10.1007/398_2017_8
Anderson, R. S., Brubacher, R. C. L., Unger, M. A. & Burreson, E. Effects oft tributyltin and hypoxia on the progression of Perkinsus marinus infections and host defence mechanisms in oyster, Crassostrea virginica (Gmelin). J. Fish Dis. 21, 371–380. https://doi.org/10.1046/j.1365-2761.1998.00128.x (1998).
doi: 10.1046/j.1365-2761.1998.00128.x
ECHA. Member state committee support document for identification of Bis(tributyltin) oxide as a substance of very high concern. European Chemicals Agency, Oct 2008. https://echa.europa.eu/documents/10162/d4d9e66d-63d8-48fc-a037-eab160e1f346 . Accessed 13 February 2020. (2008).
NOAA NCCOS Mussel Watch Program. Mason, A. Personal communication, 2018. (2017).
Kawabe, S. & Yokoyama, Y. Role of hypoxia-inducible factor α in response to hypoxia and heat shock in the Pacific Oyster Crassostrea gigas. Mar. Biotechnol. 14, 106–119. https://doi.org/10.1007/s10126-011-9394-3 (2012).
doi: 10.1007/s10126-011-9394-3
pubmed: 21748344
Li, J. et al. A thymosin beta-4 is involved in production of hemocytes and immune defense of Hong Kong oyster Crassostrea hongkongensis. Dev. Comp. Immunol. 57, 1–9. https://doi.org/10.1016/j.dci.2015.12.007 (2016).
doi: 10.1016/j.dci.2015.12.007
pubmed: 26695126
Bell, J. Evaluating the effects of water influx on the Mississippi Sound: Current vs. Historical Relationships. M.S. Thesis, The University of Mississippi, 70 pp. (2019).
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).
doi: 10.1006/meth.2001.1262
pubmed: 11846609
pmcid: 11846609
Dungan, C. F. & Bushek, D. Development and applications of Ray’s fluid thioglycollate media for detection and manipulation of Perkinsus spp. pathogens of marine molluscs. J. Invertebr. Pathol. 131, 68–82. https://doi.org/10.1016/j.jip.2015.05.004 (2015).
doi: 10.1016/j.jip.2015.05.004
pubmed: 26003823
Ray, S. M. A review of the culture method for detecting Dermocystidium marinus, with suggested modifications and precautions. Proc. Natl. Shellfish. Assoc. 54, 55–69 (1966).
Long, W. C., Seitz, R. D., Brylawski, B. J. & Lipcius, R. N. Individual, population, and ecosystem effects of hypoxia on a dominant benthic bivalve in Chesapeake Bay. Ecol. Monogr. 84, 303–327. https://doi.org/10.1890/13-0440.1 (2014).
doi: 10.1890/13-0440.1
Matthiessen, P. Detection, monitoring, and control of tributyltin-an almost complete success story. Environ. Toxicol. Chem. 32, 487–489. https://doi.org/10.1002/etc.2108 (2013).
doi: 10.1002/etc.2108
pubmed: 23418041
Cheng, T. C. Hemocytes: forms and functions. In The Eastern Oyster (eds Kennedy, V. S. et al.) 299–333 (Maryland Sea Grant, Crassostrea Virginica, 1996).
Jenny, M. J. et al. Potential indicators of stress response identified by expressed sequence tag analysis of hemocytes and embryos from the American Oyster. Crassostrea virginica. Mar. Biotechnol. 4, 81–93. https://doi.org/10.1007/s10126-001-0072-8 (2002).
doi: 10.1007/s10126-001-0072-8
pubmed: 14961291
Nam, B. H. et al. Functional analysis of Pacific oyster (Crassostrea gigas) β-thymosin: focus on antimicrobial activity. Fish Shellfish Immunol. 45, 167–174. https://doi.org/10.1016/j.fsi.2015.03.035 (2015).
doi: 10.1016/j.fsi.2015.03.035
pubmed: 25842181
Powell, E. N. What is going on with Perkinsus marinus in the Gulf of Mexico?. Estuaries Coasts 40, 105–120. https://doi.org/10.1007/s12237-016-0128-7 (2017).
doi: 10.1007/s12237-016-0128-7
Kwan, B. K. Y., Chan, A. K. Y., Cheung, S. G. & Shin, P. K. S. Responses of growth and hemolymph quality in juvenile Chinese horseshoe crab Tachypleus tridentatus (Xiphosura) to sublethal tributyltin and cadmium. Ecotoxicology 24, 1880–1895. https://doi.org/10.1007/s10646-015-1524-7 (2015).
doi: 10.1007/s10646-015-1524-7
pubmed: 26250938
Scammell, M. S., Batley, G. E. & Brockbank, C. I. A field study of the impact on oysters of tributyltin introduction and removal in a pristine lake. Arch. Environ. Contam. Toxicol. 20, 276–281. https://doi.org/10.1007/BF01055916 (1991).
doi: 10.1007/BF01055916
Sunday, A. O., Alafara, B. A. & Oladele, O. G. Toxicity and speciation analysis of organotin compounds. Chem. Spec. Bioavail. 24, 216–226. https://doi.org/10.3184/095422912X13491962881734 (2012).
doi: 10.3184/095422912X13491962881734
Fang, L., Borggaard, O. K., Holm, P. E., Hansen, H. C. B. & Cedergreen, N. Toxicity and uptake of tri- and dibutyltin in Daphnia magna in the absence and presence of nano-charcoal. Environ. Toxicol. Chem. 30, 2553–2561. https://doi.org/10.1002/etc.649 (2011).
doi: 10.1002/etc.649
pubmed: 21858855
Stickle, W. B., Kapper, M. A., Liu, L.-L., Gnaiger, E. & Wang, S. Y. Metabolic adaptations of several species of crustaceans and molluscs to hypoxia: Tolerance and microcalorimetric studies. Biol. Bull. 177, 303–312. https://doi.org/10.2307/1541945 (1989).
doi: 10.2307/1541945
Keppel, A. G., Breitburg, D. L. & Burrell, R. B. Effects of co-varying diel-cycling hypoxia and pH on growth in the juvenile eastern oyster Crassostrea virginica. PLoS One 11, 1–31. https://doi.org/10.1371/journal.pone.0161088 (2016).
doi: 10.1371/journal.pone.0161088
Weng, N. & Wang, W. X. Dynamics of maternally transferred trace elements in oyster larvae and latent growth effects. Sci. Rep. 7, 1–11. https://doi.org/10.1038/s41598-017-03753-2 (2017).
doi: 10.1038/s41598-017-03753-2