Classification of Skin Lesions into Seven Classes Using Transfer Learning with AlexNet.

AlexNet Classification of skin lesions ISIC 2018 Melanoma Transfer learning

Journal

Journal of digital imaging
ISSN: 1618-727X
Titre abrégé: J Digit Imaging
Pays: United States
ID NLM: 9100529

Informations de publication

Date de publication:
10 2020
Historique:
pubmed: 2 7 2020
medline: 24 7 2021
entrez: 2 7 2020
Statut: ppublish

Résumé

Melanoma is deadly skin cancer. There is a high similarity between different kinds of skin lesions, which lead to incorrect classification. Accurate classification of a skin lesion in its early stages saves human life. In this paper, a highly accurate method proposed for the skin lesion classification process. The proposed method utilized transfer learning with pre-trained AlexNet. The parameters of the original model used as initial values, where we randomly initialize the weights of the last three replaced layers. The proposed method was tested using the most recent public dataset, ISIC 2018. Based on the obtained results, we could say that the proposed method achieved a great success where it accurately classifies the skin lesions into seven classes. These classes are melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign keratosis, dermatofibroma, and vascular lesion. The achieved percentages are 98.70%, 95.60%, 99.27%, and 95.06% for accuracy, sensitivity, specificity, and precision, respectively.

Identifiants

pubmed: 32607904
doi: 10.1007/s10278-020-00371-9
pii: 10.1007/s10278-020-00371-9
pmc: PMC7573031
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1325-1334

Références

PLoS One. 2019 May 21;14(5):e0217293
pubmed: 31112591
J Med Syst. 2017 Sep 11;41(10):165
pubmed: 28895033
Nature. 2017 Feb 2;542(7639):115-118
pubmed: 28117445
Adv Exp Med Biol. 2008;624:89-103
pubmed: 18348450
Sensors (Basel). 2018 Feb 11;18(2):
pubmed: 29439500
J Digit Imaging. 2018 Aug;31(4):435-440
pubmed: 29047032
Vojnosanit Pregl. 2014 Nov;71(11):1062-5
pubmed: 25536811
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5437-40
pubmed: 24110966
Comput Med Imaging Graph. 1992 May-Jun;16(3):179-90
pubmed: 1623493
Comput Methods Programs Biomed. 2018 Oct;165:163-174
pubmed: 30337071
Skin Res Technol. 2007 Feb;13(1):25-33
pubmed: 17250529
IEEE Trans Med Imaging. 2017 Apr;36(4):994-1004
pubmed: 28026754
Arch Dermatol. 1995 Mar;131(3):286-91
pubmed: 7887657
CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30
pubmed: 26742998
J Med Syst. 2016 Apr;40(4):96
pubmed: 26872778
IEEE Trans Med Imaging. 2001 Mar;20(3):233-9
pubmed: 11341712
J Med Internet Res. 2018 Oct 17;20(10):e11936
pubmed: 30333097
J Am Acad Dermatol. 2018 Feb;78(2):270-277.e1
pubmed: 28969863
N Engl J Med. 2005 Nov 24;353(21):2262-9
pubmed: 16306523

Auteurs

Khalid M Hosny (KM)

Department of Information Technology, Faculty of Computers and Informatics, Zagazig, University, Zagazig 44519, Egypt. k_hosny@yahoo.com.

Mohamed A Kassem (MA)

Department of Robotics and Intelligent Machines, Faculty of Artificial Intelligence, KafrElSheikh University, KafrElSheikh, 33511, Egypt.

Mohamed M Fouad (MM)

Department of Electronics and Communication, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH