Improving pulp revascularization outcomes with buccal fat autotransplantation.
immature tooth
regenerative endodontic procedure
revascularization
Journal
Journal of tissue engineering and regenerative medicine
ISSN: 1932-7005
Titre abrégé: J Tissue Eng Regen Med
Pays: England
ID NLM: 101308490
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
25
03
2020
revised:
28
06
2020
accepted:
29
06
2020
pubmed:
2
7
2020
medline:
30
9
2021
entrez:
2
7
2020
Statut:
ppublish
Résumé
Several techniques have been introduced to improve the pulp revascularization outcomes. The use of the tissue graft can create more practical tissue regeneration, provide vascular supply, and enhance tissue healing. The aim of the present study was to investigate the histologic and molecular outcomes of pulp revascularization with buccal fat autotransplantation. Fifty-six open apex roots from four dogs aged 4-6 months were randomly allocated to five groups of endodontic regeneration models: Group 1 (negative control, n = 4); Group 2 (control and without intervention, n = 4); Group 3 (blood clot, n = 16); Group 4 (buccal fat autotransplantation, n = 16); and Group 5 (blood clot plus buccal fat autotransplantation, n = 16). After 3 months, the extracted dog teeth were analyzed by histological and immunohistochemical techniques. Furthermore, real-time quantitative polymerase chain reactions were implemented to assess the gene expression profiles of dentin sialophosphoprotein (DSPP), dentin matrix protein (DMP), collagen I (COL1), and alkaline phosphatase (ALP) on regenerated tissue in the root canals. There were no significant differences in the severity of inflammation and necrosis between intervention groups. Immunohistochemical analysis showed significant differences among the study groups in expression level of extracellular glycoproteins such as fibronectin, laminin, and tenascin C. Group 5 showed an increase in the expression of DMP1 and COL1 genes. The expression of DSPP gene increased significantly in Group 4. The expression of ALP gene increased significantly in Group 3. Using this procedure may open new fields of research for regenerative endodontic procedure in which tissue autotransplant, particularly adipose tissue, may improve the outcomes of pulp revascularization.
Substances chimiques
Collagen Type I
0
Extracellular Matrix Proteins
0
Phosphoproteins
0
Sialoglycoproteins
0
dentin sialophosphoprotein
0
Alkaline Phosphatase
EC 3.1.3.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1227-1235Informations de copyright
© 2020 John Wiley & Sons, Ltd.
Références
Albuquerque, M. T., Valera, M. C., Nakashima, M., Nor, J. E., & Bottino, M. C. (2014). Tissue-engineering-based strategies for regenerative endodontics. Journal of Dental Research, 93(12), 1222-1231. https://doi.org/10.1177/0022034514549809
Alexander, A., Torabinejad, M., Vahdati, S. A., Nosrat, A., Verma, P., & Grandhi, A. (2020). Regenerative endodontic treatment in immature noninfected ferret teeth using blood clot or SynOss Putty as scaffolds. Journal of Endodontics, 46(2), 209-215. https://doi.org/10.1016/j.joen.2019.10.029
Catalan, V., Gomez-Ambrosi, J., Rodriguez, A., Ramirez, B., Rotellar, F., Valenti, V. (2012). Increased tenascin C and toll-like receptor 4 levels in visceral adipose tissue as a link between inflammation and extracellular matrix remodeling in obesity. The Journal of Clinical Endocrinology and Metabolism, 97(10), E1880-E1889. OI: https://doi.org/10.1210/jc.2012-1670
Chen, F. M., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science, 53, 86-168. https://doi.org/10.1016/j.progpolymsci.2015.02.004
DiMuzio, P., & Tulenko, T. (2007). Tissue engineering applications to vascular bypass graft development: The use of adipose-derived stem cells. Journal Vascular Surgery, 45(Suppl A), A99-A103. doi: S0741-5214(07)00334-5 [pii]
Fried, K., Sime, W., Lillesaar, C., Virtanen, I., Tryggvasson, K., & Patarroyo, M. (2005). Laminins 2 (alpha2beta1gamma1, Lm-211) and 8 (alpha4beta1gamma1, Lm-411) are synthesized and secreted by tooth pulp fibroblasts and differentially promote neurite outgrowth from trigeminal ganglion sensory neurons. Experimental Cell Research, 307(2), 329-341. https://doi.org/10.1016/j.yexcr.2005.04.009
Hammond, S. E., Samuels, S., & Thaller, S. (2019). Filling in the details: A review of lipofilling of radiated tissues in the head and neck. The Journal of Craniofacial Surgery, 30(3), 667-671. https://doi.org/10.1097/SCS.0000000000005107
Hasheminia, S. M., Feizi, G., Razavi, S. M., & Feizianfard, M. (2007). Histologic evaluation of three treatment methods for direct pulp capping of cat's canine. Iran Endod J, 2(2), 54-60.
Karmali, R. J., Hanson, S. E., Nguyen, A. T., Skoracki, R. J., & Hanasono, M. M. (2018). Outcomes following autologous fat grafting for oncologic head and neck reconstruction. Plastic and Reconstructive Surgery, 142(3), 771-780. https://doi.org/10.1097/PRS.0000000000004686
Karwowski, W., Naumnik, B., Szczepanski, M., & Mysliwiec, M. (2012). The mechanism of vascular calcification-A systematic review. Medical Science Monitor, 18(1), RA1-RA11. https://doi.org/10.12659/msm.882181
Khademi, A. A., Dianat, O., Mahjour, F., Razavi, S. M., & Younessian, F. (2014). Outcomes of revascularization treatment in immature dog's teeth. Dental Traumatology, 30(5), 374-379. https://doi.org/10.1111/edt.12100
Khazaei, M., Bozorgi, A., Khazaei, S., & Khademi, A. (2016). Stem cells in dentistry, sources, and applications. Dental Hypotheses, 7(2), 42-52. https://doi.org/10.4103/2155-8213.183764
Khazaei, S., Khademi, A., Nasr Esfahani, M. H., Khazaei, M., Nekoofar, M. H., & Dummer, P. M. H. (2021). Isolation and differentiation of adipose-derived stem cells into odontoblast-like cells: An in vitro study. Cell Journal, 23(3). [In Press]
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biology, 8(6), 1-5, e1000412. https://doi.org/10.1371/journal.pbio.1000412
Kim, S. G., Malek, M., Sigurdsson, A., Lin, L. M., & Kahler, B. (2018). Regenerative endodontics: A comprehensive review. International Endodontic Journal, 51(12), 1367-1388. https://doi.org/10.1111/iej.12954
Londero Cde, L., Pagliarin, C. M., Felippe, M. C., Felippe, W. T., Danesi, C. C., & Barletta, F. B. (2015). Histologic analysis of the influence of a gelatin-based scaffold in the repair of immature dog teeth subjected to regenerative endodontic treatment. Journal of Endodontia, 41(10), 1619-1625. doi: S0099-2399(15)00100-4 [pii]. https://doi.org/10.1016/j.joen.2015.01.033
Martinez, E. F., Machado de Souza, S. O., Correa, L., & Cavalcanti de Araujo, V. (2000). Immunohistochemical localization of tenascin, fibronectin, and type III collagen in human dental pulp. Journal of Endodontia, 26(12), 708-711. doi: S0099-2399(05)60824-2 [pii]. https://doi.org/10.1097/00004770-200012000-00008
Mizuno, M., & Banzai, Y. (2008). Calcium ion release from calcium hydroxide stimulated fibronectin gene expression in dental pulp cells and the differentiation of dental pulp cells to mineralized tissue forming cells by fibronectin. International Endodontic Journal, 41(11), 933-938. doi: IEJ1420 [pii]. https://doi.org/10.1111/j.1365-2591.2008.01420.x
Mizuno, M., Miyamoto, T., Wada, K., Watatani, S., & Zhang, G. X. (2003). Type I collagen regulated dentin matrix protein-1 (DMP-1) and osteocalcin (OCN) gene expression of rat dental pulp cells. Journal of cellular biochemistry, 88(6), 1112-1119. https://doi.org/10.1002/jcb.10466
Moradi, S., Saghravanian, N., Moushekhian, S., Fatemi, S., & Forghani, M. (2015). Immunohistochemical evaluation of fibronectin and tenascin following direct pulp capping with mineral trioxide aggregate, platelet-rich plasma and propolis in dogs' teeth. Iran Endod J, 10(3), 188-192. https://doi.org/10.7508/iej.2015.03.009
Mori, S., Kiuchi, S., Ouchi, A., Hase, T., & Murase, T. (2014). Characteristic expression of extracellular matrix in subcutaneous adipose tissue development and adipogenesis; Comparison with visceral adipose tissue. International Journal of Biological Sciences, 10(8), 825-833. https://doi.org/10.7150/ijbs.8672
Nosrat, A., Kolahdouzan, A., Hosseini, F., Mehrizi, E. A., Verma, P., & Torabinejad, M. (2015). Histologic outcomes of uninfected human immature teeth treated with regenerative endodontics: 2 Case reports. Journal of Endodontia, 41(10), 1725-1729. doi: S0099-2399(15)00446-X [pii]. https://doi.org/10.1016/j.joen.2015.05.004
Palma, P. J., Ramos, J. C., Martins, J. B., Diogenes, A., Figueiredo, M. H., & Ferreira, P. (2017). Histologic evaluation of regenerative endodontic procedures with the use of chitosan scaffolds in immature dog teeth with apical periodontitis. Journal of Endodontia, 43(8), 1279-1287. doi: S0099-2399(17)30295-9 [pii]. https://doi.org/10.1016/j.joen.2017.03.005
Salehi-Nik, N., Rezai Rad, M., Kheiri, L., Nazeman, P., Nadjmi, N., & Khojasteh, A. (2017). Buccal fat pad as a potential source of stem cells for bone regeneration: A literature review. Stem Cells International, 2017, 1-13, 8354640. https://doi.org/10.1155/2017/8354640
Savinov, A. Y., Salehi, M., Yadav, M. C., Radichev, I., Millan, J. L., & Savinova, O. V. (2015). Transgenic overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in vascular endothelium results in generalized arterial calcification. Journal of the American Heart Association, 4(12), 1-13. https://doi.org/10.1161/JAHA.115.002499
Shivashankar, V. Y., Johns, D. A., Vidyanath, S., & Kumar, M. R. (2012). Platelet rich fibrin in the revitalization of tooth with necrotic pulp and open apex. Journal of Conservative Dentistry, 15(4), 395-398. https://doi.org/10.4103/0972-0707.101926
Sultan, S. M., Barr, J. S., Butala, P., Davidson, E. H., Weinstein, A. L., & Knobel, D. (2012). Fat grafting accelerates revascularisation and decreases fibrosis following thermal injury. Journal of Plastic, Reconstructive & Aesthetic Surgery, 65(2), 219-227. doi: S1748-6815(11)00509-2 [pii]. https://doi.org/10.1016/j.bjps.2011.08.046
Thibodeau, B., Teixeira, F., Yamauchi, M., Caplan, D. J., & Trope, M. (2007). Pulp revascularization of immature dog teeth with apical periodontitis. Journal of Endodontia, 33(6), 680-689. doi: S0099-2399(07)00221-X [pii]. https://doi.org/10.1016/j.joen.2007.03.001
Torabinejad, M., Faras, H., Corr, R., Wright, K. R., & Shabahang, S. (2014). Histologic examinations of teeth treated with 2 scaffolds: A pilot animal investigation. Journal of Endodontia, 40(4), 515-520. doi: S0099-2399(13)01170-9 [pii]. https://doi.org/10.1016/j.joen.2013.12.025
Toshihiro, Y., Nariai, Y., Takamura, Y., Yoshimura, H., Tobita, T., & Yoshino, A. (2013). Applicability of buccal fat pad grafting for oral reconstruction. International Journal of Oral and Maxillofacial Surgery, 42(5), 604-610. doi: S0901-5027(12)00320-7 [pii]. https://doi.org/10.1016/j.ijom.2012.07.009
Unamuno, X., Gomez-Ambrosi, J., Rodriguez, A., Becerril, S., Fruhbeck, G., & Catalan, V. (2018). Adipokine dysregulation and adipose tissue inflammation in human obesity. European Journal of Clinical Investigation, 48(9), 1-11, e12997. https://doi.org/10.1111/eci.12997
Viti, F., Landini, M., Mezzelani, A., Petecchia, L., Milanesi, L., & Scaglione, S. (2016). Osteogenic differentiation of MSC through calcium signaling activation: Transcriptomics and functional analysis. PLoS ONE, 11(2), 1-21, e0148173. https://doi.org/10.1371/journal.pone.0148173
Wang, X., Thibodeau, B., Trope, M., Lin, L. M., & Huang, G. T. (2010). Histologic characterization of regenerated tissues in canal space after the revitalization/revascularization procedure of immature dog teeth with apical periodontitis. Journal of Endodontia, 36(1), 56-63. doi: S0099-2399(09)00826-7 [pii]. https://doi.org/10.1016/j.joen.2009.09.039
Yamakoshi, Y. (2009). Dentinogenesis and dentin sialophosphoprotein (DSPP). Journal of oral biosciences, 51(3), 134-142. https://doi.org/10.2330/joralbiosci.51.134