The effect of a diet based on rice straw co-fermented with probiotics and enzymes versus a fresh corn Stover-based diet on the rumen bacterial community and metabolites of beef cattle.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 07 2020
01 07 2020
Historique:
received:
09
10
2019
accepted:
10
06
2020
entrez:
3
7
2020
pubmed:
3
7
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Improvement of the food value of rice straw is urgently required in rice crop growing areas to mitigate pollution caused by rice straw burning and enhance the supply of high-quality forages for ruminants. The aims of the present study were to compare the effects of fresh corn Stover and rice straw co-fermented with probiotics and enzymes on rumen fermentation and establish the feasibility of increasing the rice straw content in ruminant diets and, by extension, reducing air pollution caused by burning rice straw. Twenty Simmental hybrid beef cattle were randomly allotted to two groups with ten cattle per group. They were fed diets based either on rice straw co-fermented with probiotics and enzymes or fresh corn Stover for 90 days. Rumen fluid was sampled with an esophageal tube vacuum pump device from each animal on the mornings of days 30, 60, and 90. Bacterial diversity was evaluated by sequencing the V4-V5 region of the 16S rRNA gene. Metabolomes were analyzed by gas chromatography/time-of-flight mass spectrometry (GC-TOF/MS). Compared to cattle fed fresh corn Stover, those fed rice straw co-fermented with probiotics and enzymes had higher (P < 0.05) levels of acetic acid and propionate in rumen liquid at d 60 and d 90 respectively, higher (P < 0.05) abundances of the phyla Bacteroidetes and Fibrobacteres and the genera Ruminococcus, Saccharofermentans, Pseudobutyrivibrio, Treponema, Lachnoclostridium, and Ruminobacter, and higher (P < 0.05) concentrations of metabolites involved in metabolisms of amino acid, carbohydrate, and cofactors and vitamins. Relative to fresh corn Stover, rice straw co-fermented with probiotics and enzymes resulted in higher VFA concentrations, numbers of complex carbohydrate-decomposing and H
Identifiants
pubmed: 32612135
doi: 10.1038/s41598-020-67716-w
pii: 10.1038/s41598-020-67716-w
pmc: PMC7329892
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10721Références
Cottle, D. J., Nolan, J. V. & Wiedemann, S. G. Ruminant enteric methane mitigation: a review. Anim. Prod. Sci. 51, 491 (2011).
doi: 10.1071/AN10163
Huang, X. D. et al. Methanogen diversity in indigenous and introduced ruminant species on the Tibetan Plateau. Archaea. 1–10 (2016).
Martinez-Fernandez, G. et al. Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. Front. Microbiol. 7, 1122 (2016).
pubmed: 27486452
pmcid: 4949212
doi: 10.3389/fmicb.2016.01122
Denman, S. E., Martinez-Fernandez, G., Shinkai, T., Mitsumori, M. & McSweeney, C. S. Metagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analog. Front. Microbiol. 6, 1087 (2015).
pubmed: 26528253
pmcid: 4602129
doi: 10.3389/fmicb.2015.01087
Spanghero, M., Zanfi, C., Fabbro, E., Scicutella, N. & Camellini, C. Effects of a blend of essential oils on some end products of in vitro rumen fermentation. Anim. Feed Sci. Technol. 145, 364–374 (2008).
doi: 10.1016/j.anifeedsci.2007.05.048
Owens, D., McGee, M., Boland, T. & O’Kiely, P. Rumen fermentation, microbial protein synthesis, and nutrient flow to the omasum in cattle offered corn silage, grass silage, or whole-crop wheat 1. J. Anim. Sci. 87, 658–668 (2009).
pubmed: 18952732
doi: 10.2527/jas.2007-0178
Boadi, D., Benchaar, C., Chiquette, J. & Massé, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can. J. Anim. Sci. 84, 319–335 (2004).
doi: 10.4141/A03-109
Hash, C. T. et al. Opportunities for marker-assisted selection (mas) to improve the feed quality of crop residues in pearl millet and sorghum. Field Crop Res. 84, 88 (2003).
doi: 10.1016/S0378-4290(03)00142-4
Barana, D., Salanti, A., Orlandi, M., Ali, D. S. & Zoia, L. Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo Donax. Ind. Crop. Prod. 86, 31–39 (2016).
doi: 10.1016/j.indcrop.2016.03.029
Mosier, N. et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005).
pubmed: 15588770
doi: 10.1016/j.biortech.2004.06.025
Wang, J. K., Liu, J. X., Li, J. Y., Wu, Y. M. & Ye, J. A. Histological and rumen degradation changes of rice straw stem epidermis as influenced by chemical pretreatment. Anim. Feed Sci. Technol. 136, 51–62 (2007).
doi: 10.1016/j.anifeedsci.2006.08.017
Shawky, B. T., Mahmoud, M. G., Ghazy, E. A., Asker, M. M. S. & Ibrahim, G. S. Enzymatic hydrolysis of rice straw and corn stalks for monosugars production. J. Gen. Eng. Biotechnol. 9, 59–63 (2011).
doi: 10.1016/j.jgeb.2011.05.001
Li, Z. P. et al. Bacterial community composition and fermentation patterns in the rumen of sika deer (Cervus nippon) fed three different diets. Microb. Ecol. 69, 307–318 (2015).
pubmed: 25252928
doi: 10.1007/s00248-014-0497-z
Hughes, S. A., Shewry, P. R., Gibson, G. R., Mccleary, B. V. & Rastall, R. A. In vitro fermentation of oat and barley derived β-glucans by human faecal microbiota. FEMS Microbiol. Ecol. 64, 482–493 (2008).
pubmed: 18430007
doi: 10.1111/j.1574-6941.2008.00478.x
Wu, Y. M., Liu, J. X., Liu, D. & Lu, J. M. Effects of addition of cellulase-xylanase based enzyme and/or wheat bran on the quality of corn Stover and rice straw silages and on their digestibility by sheep. Chin. J. Vet. 24, 298–303 (2004).
Wadhwa, M., Kaur, K. & Bakshi, M. P. Effect of naturally fermented rice straw based diet on the performance of buffalo calves. Indian J. Anim. Sci. 80, 249–252 (2010).
Han, R. et al. Milk fatty acid profiles in Holstein dairy cows fed diets based on corn Stover or mixed forage. Arch. Anim. Nutr. 68, 63–71 (2014).
pubmed: 24422608
doi: 10.1080/1745039X.2013.869986
Chumpawadee, S., Sommart, K., Vongpralub, T. & Pattarajinda, V. Nutritional evaluation of crop residues and selected roughages for ruminants using in vitro gas production technique. Chiang. Mai. J. Sci. 33, 371–380 (2006).
Bainbridge, M. L., Cersosimo, L. M., Wright, A. D. G. & Kraft, J. Rumen bacterial communities shift across a lactation in Holstein, Jersey, and Holstein x Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition, and production parameters. FEMS Microbiol. Ecol. 92, fiw059 (2016).
pubmed: 26985012
doi: 10.1093/femsec/fiw059
Chaput, J. P., Thivierge, M. C. & Tremblay, A. Propionate: hypophagic effects observed in animal models might be transposed to the human obesity management. Curr. Nutr. Food Sci. 2, 375–379 (2006).
doi: 10.2174/157340106778699476
Tan, H. Y. et al. Effects of condensed tannins from leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 169, 193 (2011).
doi: 10.1016/j.anifeedsci.2011.07.004
Wanapat, M. & Rowlinson, P. Nutrition and feeding of swamp buffalo: feed resources and rumen approach. Italian J. Anim. Sci. 6, 67–73 (2007).
doi: 10.4081/ijas.2007.s2.67
Mohammed, R. et al. Bacterial communities in the rumen of Holstein heifers differ when fed orchardgrass as pasture vs. hay. Front. Microbiol. 5, 689 (2014).
pubmed: 25538699
pmcid: 4260508
doi: 10.3389/fmicb.2014.00689
Abd El-Tawab, M. M., Youssef, I. M. I., Bakr, H. A., Fthenakis, G. C. & Giadinis, N. D. Role of probiotics in nutrition and health of small ruminants. Polish. J. Vet. Sci. 19, 893–906 (2016).
doi: 10.1515/pjvs-2016-0114
Rodrigues, M. et al. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim. Feed Sci. Technol. 141, 326–338 (2008).
doi: 10.1016/j.anifeedsci.2007.06.015
Sheikh, G. G., Ganai, A. M., Ishfaq, A., Afzai, Y. & Ahmad, H. A. In vitro effect of probiotic mix and fibrolytic enzyme mixture on digestibility of paddy straw. Adv. Anim. Vet. Sci. 5, 260–266 (2017).
Sujani, S., Piyasena, T., Seresinhe, T., Pathirana, I. & Gajaweera, C. Supplementation of rice straw (Oryza sativa) with exogenous fibrolyticenzymes improves in vitro rumen fermentation characteristics. Turk. J. Vet. Anim. Sci. 41, 25–29 (2017).
doi: 10.3906/vet-1503-8
Yuangklang, C. et al. Growth performance and macronutrient digestion in goats fed a rice straw based ration supplemented with fibrolytic enzymes. Small Ruminant Res. 154, S0921448817301682 (2017).
doi: 10.1016/j.smallrumres.2017.06.009
Abraham, A., Mathew, A. K., Sindhu, R., Pandey, A. & Binod, P. Potential of rice straw for bio-refining: an overview. Bioresour. Technol. 215, 29–36 (2016).
pubmed: 27067674
doi: 10.1016/j.biortech.2016.04.011
Xu, J. & Yang, Q. Isolation and characterization of rice straw degrading streptomyces griseorubens C-5. Biodegradation 21, 107 (2010).
pubmed: 19597946
doi: 10.1007/s10532-009-9285-8
Krishania, M., Kumar, V. & Sangwan, R. Integrated approach for extraction of xylose, cellulose, lignin and silica from rice straw. Bioresour. Technol. Rep. 1, 89–93 (2018).
doi: 10.1016/j.biteb.2018.01.001
Omer, H. A. A. et al. Nutritional impact of partial or complete replacement of clover hay by untreated or biologically treated rice straw and corn stalks on: 1. Growth performance and economic evaluation of growing New Zealand (NZW) White rabbits. Bull. Natl. Res. Centrol 43, 192 (2019).
doi: 10.1186/s42269-019-0235-2
Wanapat, M., Kang, S., Hankla, N. & Phesatcha, K. Effect of rice straw treatment on feed intake, rumen fermentation and milk production in lactating dairy cows. Afr. J. Agr. Res. 8, 1677–1687 (2013).
doi: 10.5897/AJAR2013.6732
Elmenofy, E. K. et al. Improving the nutritive value of ensiled green rice straw 2—in vitro gas production. Nat. Sci. 10, 86–91 (2012).
Fonseca, B. G., Mateo, S., López, A. J. M. & Roberto, I. Biotreatment optimization of rice straw hydrolyzates for ethanolic fermentation with scheffersomyces stipitis. Biomass. Bioenergy 112, 19–28 (2018).
doi: 10.1016/j.biombioe.2018.02.003
Liu, P. et al. Dietary corn bran fermented by bacillus subtilis MA139 decreased gut cellulolytic bacteria and microbiota diversity in finishing pigs. Front. Cell Infect. Mi. 7, 526 (2017).
doi: 10.3389/fcimb.2017.00526
Raj, K. D., Kumar, S. S. & Tewari, R. Enhanced production of pectinase by bacillus Sp. DT7 using solid state fermentation. Bioresour. Technol. 88, 251–254 (2003).
doi: 10.1016/S0960-8524(02)00206-7
Pitta, D. W. et al. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb. Ecol. 59, 511–522 (2010).
pubmed: 20037795
doi: 10.1007/s00248-009-9609-6
Almeida, P. N. M. et al. Aerobic fungi in the rumen fluid from dairy cattle fed different sources of forage. Rev. Braz. Zoote. 41, 2336–2342 (2012).
doi: 10.1590/S1516-35982012001100006
Akinbode, R. M., Isah, O. A., Oni, A. O., Adewumi, O. O. & Omoniyi, L. A. Effect of different tropical roughages on nutrient digestibility and rumen fermentation parameters of West African dwarf sheep during dry season. Indian J. Anim. Sci. 84, 1105–1108 (2014).
Brulc, J. M. et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl. Acad. Sci. USA 106, 1948–1953 (2009).
pubmed: 19181843
doi: 10.1073/pnas.0806191105
pmcid: 2633212
Fernando, S. C. et al. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microb. 76, 7482–7490 (2010).
doi: 10.1128/AEM.00388-10
Petri, R. M. et al. Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLoS ONE 8, e83424 (2013).
pubmed: 24391765
pmcid: 3877040
doi: 10.1371/journal.pone.0083424
Pitta, D. W. et al. Bacterial diversity associated with feeding dry forage at different dietary concentrations in the rumen contents of Mehshana Buffalo (Bubalus Bubalis) Using 16S Pyrotags. Anaerobe 25, 31–41 (2014).
pubmed: 24315806
doi: 10.1016/j.anaerobe.2013.11.008
McCann, J. C. et al. Relationship between the rumen microbiome and residual feed intake-efficiency of brahman bulls stocked on bermudagrass pastures. PLoS ONE 9, e91864 (2014).
pubmed: 24642871
pmcid: 3958397
doi: 10.1371/journal.pone.0091864
Myer, P., Smith, T., Wells, J., Kuehn, L. & Freetly, H. Rumen microbiome from steers differing in feed efficiency. PLoS ONE 10, e129174 (2015).
doi: 10.1371/journal.pone.0129174
Pitta, D. W. et al. Bacterial diversity dynamics associated with different diets and different primer Pairs in the Rumen of Kankrej Cattle. PLoS ONE 9, e111710 (2014).
pubmed: 25365522
pmcid: 4218807
doi: 10.1371/journal.pone.0111710
Huo, W., Zhu, W. & Mao, S. Impact of subacute ruminal acidosis on the diversity of liquid and solid-associated bacteria in the rumen of goats. World J. Microbiol. Biotechnol. 30, 669–680 (2014).
pubmed: 24068532
doi: 10.1007/s11274-013-1489-8
Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).
pubmed: 17183309
doi: 10.1038/4441022a
Thomas, F., Hehemann, J., Rebuffet, E., Czjzek, M. & Michel, G. Environmental and gut bacteroidetes: the food connection. Front. Microbiol. 2, 93 (2011).
pubmed: 21747801
pmcid: 3129010
doi: 10.3389/fmicb.2011.00093
Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISEM J. 5, 220–230 (2011).
doi: 10.1038/ismej.2010.118
Leser, T. D. et al. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl. Environ. Microb. 68, 673–690 (2002).
doi: 10.1128/AEM.68.2.673-690.2002
Walker, J. A., Kilroy, G. E., Xing, J., Shewale, J. & Batzer, M. A. Human DNA quantitation using Alu element-based polymerase chain reaction. Anal. Biochem. 315, 122–128 (2003).
pubmed: 12672420
doi: 10.1016/S0003-2697(03)00081-2
Carlos, C., Fan, H. & Currie, C. R. Substrate shift reveals roles for members of bacterial consortia in degradation of plant cell wall polymers. Front. Microbiol. 9, 364 (2018).
pubmed: 29545786
pmcid: 5839234
doi: 10.3389/fmicb.2018.00364
Ozbayram, E., Kleinsteuber, S., Nikolausz, M., Ince, B. & Ince, O. Enrichment of lignocellulose-degrading microbial communities from natural and engineered methanogenic environments. Appl. Microbiol. Biot. 102, 1035–1043 (2018).
doi: 10.1007/s00253-017-8632-7
Ungerfeld, E. M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Front. Microbiol. 6, 37 (2015).
pubmed: 25699029
pmcid: 4316778
Joshua, M. & Daniel, B. G. Digestion of cell-wall monosaccharides of ryegrass and alfalfa hays by the ruminal bacteria fibrobacter succinogenes and butyrivibrio fibrisolvens. Can. J. Microbiol. 39, 780–786 (1993).
doi: 10.1139/m93-115
Emma, R. J., Jones, D. L., McCarthy, A. J. & McDonald, J. E. The fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb. Ecol. 63, 267–281 (2012).
doi: 10.1007/s00248-011-9998-1
Deng, Y. F. et al. Influence of dairy by-product waste milk on the microbiomes of different gastrointestinal tract components in pre-weaned dairy calves. Sci Rep. 7, 42689 (2017).
pubmed: 28281639
pmcid: 5345013
doi: 10.1038/srep42689
Shivlata, L. & Tulasi, S. Thermophilic and alkaliphilic actinobacteria: biology and potential applications. Front. Microbiol. 6, 1014 (2015).
pubmed: 26441937
pmcid: 4585250
doi: 10.3389/fmicb.2015.01014
Nuli, R., Cai, J., Kadeer, A., Zhang, Y. & Mohemaiti, P. Integrative analysis toward different glucose tolerance-related gut microbiota and diet. Front Endocrinol. 10, 295 (2019).
doi: 10.3389/fendo.2019.00295
Luo, D. et al. Niacin alters the ruminal microbial composition of cattle under high-concentrate condition. Chin. J. Anim. Nutr. 3, 180–185 (2017).
doi: 10.1016/j.aninu.2017.04.005
Grilli, D. J. et al. Analysis of the rumen bacterial diversity of goats during shift from forage to concentrate diet. Anaerobe 42, 17–26 (2016).
pubmed: 27417742
doi: 10.1016/j.anaerobe.2016.07.002
Matsui, H. et al. Phenotypic characterization of polysaccharidases produced by four prevotella type strains. Curr. Microbiol. 41, 45–49 (2000).
pubmed: 10919398
doi: 10.1007/s002840010089
Kabel, M. A. et al. Biochemical characterization and relative expression levels of multiple carbohydrate esterases of the xylanolytic rumen bacterium prevotella ruminicola 23 grown on an ester-enriched substrate. Appl. Environ. Microb. 77, 5671–5681 (2011).
doi: 10.1128/AEM.05321-11
Chassard, C., Delmas, E., Robert, C., Lawson, P. A. & Bernalier, D. A. Ruminococcus champanellensis Sp. Nov., a cellulose-degrading bacterium from human gut microbiota. Int. J. Syst. Evol. Microbiol. 62, 138 (2012).
pubmed: 21357460
doi: 10.1099/ijs.0.027375-0
Li, R. W., Connor, E. E., Li, C., Baldwin, R. L. & Sparks, M. E. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ. Microbiol. 14, 129–139 (2012).
pubmed: 21906219
doi: 10.1111/j.1462-2920.2011.02543.x
Wegmann, U. et al. Complete genome of a new firmicutes species belonging to the dominant human colonic microbiota ('Ruminococcus Bicirculans’) reveals two chromosomes and a selective capacity to utilize plant glucans. Environ. Microbiol. 16, 2879 (2014).
pubmed: 23919528
doi: 10.1111/1462-2920.12217
La Reau, A. J. & Suen, G. The Ruminococci: key symbionts of the gut ecosystem. J. Microbiol. 56, 199–208 (2018).
pubmed: 29492877
doi: 10.1007/s12275-018-8024-4
Hopgood, F. M. & Walker, J. D. Succinic acid production by rumen bacteria. III. Enzymic studies on the formation of succinate by Ruminococcus Flavefaciens. Aust. J. Biol. Sci. 22, 1413–1424 (1969).
doi: 10.1071/BI9691413
Song, H. & Lee, S. Y. Production of succinic acid by bacterial fermentation. Enzyme Microb. Technol. 39, 352–361 (2006).
doi: 10.1016/j.enzmictec.2005.11.043
Yuan, Z. P. et al. Inhibition of methanogenesis by tea Saponin and tea Saponin plus disodium fumarate in sheep. J. Anim. Feed Sci. 16, 560–565 (2007).
doi: 10.22358/jafs/74607/2007
Russell, J. B. The importance of ph in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy Sci. 81, 3222 (1998).
pubmed: 9891267
doi: 10.3168/jds.S0022-0302(98)75886-2
Kopecˇny, J., Zorec, M., Zek, J. M., Kobayashi, Y. & Marinsˇek-Logar, R. Butyrivibrio Hungatei Sp. Nov. And Pseudobutyrivibrio Xylanivorans Sp. Nov., butyrate-producing bacteria from the Rumen. Int. J. Syst. Evol. Microbiol. 53, 201–209 (2003).
doi: 10.1099/ijs.0.02345-0
Piknova, M. et al. Treponema Zioleckii Sp. Nov., A Novel Fructan-utilizing species of rumen treponemes. FEMS Microbiol. Lett. 289, 166–172 (2010).
doi: 10.1111/j.1574-6968.2008.01383.x
Bekele, A. Z., Koike, S. & Kobayashi, Y. Phylogenetic diversity and dietary association of rumen treponema revealed using group-Speci¢c16S rRNA gene-based analysis. FEMS Microbiol. Lett. 316, 51–60 (2011).
pubmed: 21204927
doi: 10.1111/j.1574-6968.2010.02191.x
Svartström, O. et al. Ninety-nine de novo assembled genomes from the moose (Alces Alces) rumen microbiome provide new insights into microbial plant biomass degradation. ISME J. 11, 2538–3255 (2017).
pubmed: 28731473
pmcid: 5648042
doi: 10.1038/ismej.2017.108
Dusková, D. & Marounek, M. Fermentation of Pectin and Glucose, and Activity of Pectin-Degrading Enzymes in the Rumen Bacterium Lachnospira Multiparus. Lett. Appl. Microbiol. 33, 159–163 (2010).
doi: 10.1046/j.1472-765x.2001.00970.x
Liu, J., Pu, Y., Xie, Q., Wang, J. & Liu, J. Pectin induces an in vitro rumen microbial population shift attributed to the pectinolytic treponema group. Curr. Microbiol. 70, 67 (2015).
pubmed: 25178631
doi: 10.1007/s00284-014-0672-y
Ravachol, J. et al. Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium Cellulolyticum. Biotechnol. Biofuels 8, 114 (2015).
pubmed: 26269713
pmcid: 4533799
doi: 10.1186/s13068-015-0301-4
Nurmeiliasari, N., Priyanto, R., Astuti, D. A., Salundik, & Takahashi, J. Utilization of rumen mechanical stimulator as pseudo fiber in ruminant to minimize metabolic problem. Indonesian Bull. Anim. Vet. Sci. 27, 67–80 (2017).
doi: 10.14334/wartazoa.v27i2.1589
Cotta, M. A. Interaction of Ruminal bacteria in the production and utilization of Maltooligosaccharides from starch. Appl. Environ. Microb. 58, 48–54 (1992).
doi: 10.1128/aem.58.1.48-54.1992
González, A. C., Barraza, M. B., Viveros, J. D. & Martínezb, A. C. Rumen microorganisms and fermentation. Arch. Med. Vet. 46, 349–361 (2014).
doi: 10.4067/S0301-732X2014000300003
Stack, R. J., Hungate, R. E. & Opsahl, W. P. Phenylacetic acid stimulation of cellulose digestion by Ruminococcus albus 8. Appl. Environ. Microbiol. 46, 539–544 (1983).
pubmed: 6639013
pmcid: 239312
doi: 10.1128/aem.46.3.539-544.1983
Stack, R. J. & Cotta, M. A. Effect of 3-phenylpropanoic acid on growth of, and cellulose utilization by, cellulolytic ruminal bacteria. Appl. Environ. Microbiol. 52, 209–210 (1986).
pubmed: 16347111
pmcid: 203454
doi: 10.1128/aem.52.1.209-210.1986
Castro-Montoya, J., Campeneere, S. D., Ranst, G. V. & Fievez, V. Interactions between methane mitigation additives and basal substrates on in vitro methane and vfa production. Anim. Feed. Sci. Technol. 176, 47–60 (2012).
doi: 10.1016/j.anifeedsci.2012.07.007
Li, Z. J. et al. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size. J. Anim. Sci. Biotechnol. 9, 21 (2018).
pubmed: 29449940
pmcid: 5806233
doi: 10.1186/s40104-018-0235-3
Bühler, K., Bucher, B., Wenk, C. & Broz, J. Influence of benzoic acid in high fibre diets on nutrient digestibility and VFA production in growing/finishing pigs. Arch. Anim. Nutr. 63, 127–136 (2009).
pubmed: 19489455
doi: 10.1080/17450390902723927
Ogunade, I. M. et al. Bacterial diversity and composition of alfalfa silage as analyzed by illumina miseq sequencing: effects of, escherichia coli, o157:h7 and silage additives. J Dairy Sci. 101, 1–12 (2017).
Li, L. Z. et al. Effects of Recombinant Swollenin on the enzymatic hydrolysis, Rumen fermentation, and rumen Microbiota during in vitro incubation of agricultural straws. Int. J. Biol. Macromol. 122, 348–358 (2019).
pubmed: 30401653
doi: 10.1016/j.ijbiomac.2018.10.179
Lima, F. S. et al. Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows. Appl. Environ. Microb. 81, 1327–1337 (2015).
doi: 10.1128/AEM.03138-14
Kumar, A. et al. Impact of nutrition and rotavirus infection on the infant gut microbiota in a humanized pig model. BMC Gastroenterol. 18, 93 (2018).
pubmed: 29929472
pmcid: 6013989
doi: 10.1186/s12876-018-0810-2
He, Y. Y. et al. Identification of differential metabolites in liquid diet fermented with bacillus subtilis using gas chromatography time of flight mass spectrometry. Chin. J. Anim. Nutr. 2, 351–356 (2016).
doi: 10.1016/j.aninu.2016.07.007
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina paired-end read merger. Bioinformatics 30, 614 (2014).
pubmed: 24142950
doi: 10.1093/bioinformatics/btt593
Krumbeck, J. A. et al. In vivor selection to identify bacterial strains with enhanced ecological performance in synbiotic applications. Appl. Environ. Microb. 81, 2455–2465 (2015).
doi: 10.1128/AEM.03903-14
Li, Y. et al. Intestinal Microbiome–metabolome responses to essential oils in piglets. Front. Microbiol. 9, 1988 (2018).
pubmed: 30210470
pmcid: 6120982
doi: 10.3389/fmicb.2018.01988
Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).
pubmed: 25957349
pmcid: 4547618
doi: 10.1093/bioinformatics/btv287
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 28, 27–30 (2000).
pubmed: 10592173
doi: 10.1093/nar/28.1.27
pmcid: 102409
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucl. Acids Res. 45, D353–D361 (2017).
pubmed: 27899662
doi: 10.1093/nar/gkw1092
Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123 (2014).
pubmed: 25061070
pmcid: 4609014
doi: 10.1093/bioinformatics/btu494
Kind, T. et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038–10048 (2009).
pubmed: 19928838
pmcid: 2805091
doi: 10.1021/ac9019522
Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011).
pubmed: 21720319
doi: 10.1038/nprot.2011.335
Kanehisa, M. et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucl. Acids Res. 42, D199–D205 (2014).
pubmed: 24214961
doi: 10.1093/nar/gkt1076
Xia, J., Psychogios, N., Young, N. & Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucl. Acids Res. 37, W652–W660 (2009).
pubmed: 19429898
doi: 10.1093/nar/gkp356
pmcid: 2703878