NSs amyloid formation is associated with the virulence of Rift Valley fever virus in mice.
Amyloid
/ chemistry
Amyloidogenic Proteins
/ chemistry
Animals
Cell Line, Tumor
Cell Nucleus
/ metabolism
Chlorocebus aethiops
HeLa Cells
Humans
Mice
Microscopy, Confocal
Microscopy, Electron, Transmission
Protein Aggregation, Pathological
/ metabolism
Rift Valley Fever
/ metabolism
Rift Valley fever virus
/ metabolism
Vero Cells
Viral Nonstructural Proteins
/ chemistry
Virulence
Virulence Factors
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
01 07 2020
01 07 2020
Historique:
received:
17
06
2019
accepted:
13
06
2020
entrez:
3
7
2020
pubmed:
3
7
2020
medline:
1
9
2020
Statut:
epublish
Résumé
Amyloid fibrils result from the aggregation of host cell-encoded proteins, many giving rise to specific human illnesses such as Alzheimer's disease. Here we show that the major virulence factor of Rift Valley fever virus, the protein NSs, forms filamentous structures in the brain of mice and affects mortality. NSs assembles into nuclear and cytosolic disulfide bond-dependent fibrillary aggregates in infected cells. NSs structural arrangements exhibit characteristics typical for amyloids, such as an ultrastructure of 12 nm-width fibrils, a strong detergent resistance, and interactions with the amyloid-binding dye Thioflavin-S. The assembly dynamics of viral amyloid-like fibrils can be visualized in real-time. They form spontaneously and grow in an amyloid fashion within 5 hours. Together, our results demonstrate that viruses can encode amyloid-like fibril-forming proteins and have strong implications for future research on amyloid aggregation and toxicity in general.
Identifiants
pubmed: 32612175
doi: 10.1038/s41467-020-17101-y
pii: 10.1038/s41467-020-17101-y
pmc: PMC7329897
doi:
Substances chimiques
Amyloid
0
Amyloidogenic Proteins
0
Viral Nonstructural Proteins
0
Virulence Factors
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3281Références
Knowles, T. P., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).
pubmed: 24854788
Collinge, J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 539, 217–226 (2016).
pubmed: 27830781
Arosio, P., Knowles, T. P. & Linse, S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys. 17, 7606–7618 (2015).
pubmed: 25719972
pmcid: 4498454
Tetz, G. & Tetz, V. Prion-like domains in eukaryotic viruses. Sci. Rep. 8, 8931, https://doi.org/10.1038/s41598-018-27256-w (2018).
doi: 10.1038/s41598-018-27256-w
pubmed: 29895872
pmcid: 5997743
McIntosh, P. B. et al. Structural analysis reveals an amyloid form of the human papillomavirus type 16 E1–E4 protein and provides a molecular basis for its accumulation. J. Virol. 82, 8196–8203 (2008).
pubmed: 18562538
pmcid: 2519553
Pham C. L., et al. Viral M45 and necroptosis-associated proteins form heteromeric amyloid assemblies. EMBO Rep 20, https://doi.org/10.15252/embr.201846518 (2019).
Swanepoel, R. & Blackburn, N. K. Demonstration of nuclear immunofluorescence in Rift Valley fever infected cells. J. Gen. Virol. 34, 557–561 (1977).
pubmed: 323417
Hartman, A. Rift Valley fever. Clin. Lab. Med. 37, 285–301 (2017).
pubmed: 28457351
pmcid: 5458783
Leger, P. & Lozach, P. Y. Bunyaviruses: from transmission by arthropods to virus entry into the mammalian host first-target cells. Future Virol. 10, 859–881 (2015).
Wuerth J. D., Weber F. Phleboviruses and the type I interferon response. Viruses 8 https://doi.org/10.3390/v8060174 (2016).
Bouloy, M. et al. Genetic evidence for an interferon-antagonistic function of Rift Valley fever virus nonstructural protein NSs. J. Virol. 75, 1371–1377 (2001).
pubmed: 11152510
pmcid: 114043
Smith, D. R. et al. The pathogenesis of Rift Valley fever virus in the mouse model. Virology 407, 256–267 (2010).
pubmed: 20850165
Ross, T. M., Bhardwaj, N., Bissel, S. J., Hartman, A. L. & Smith, D. R. Animal models of Rift Valley fever virus infection. Virus Res. 163, 417–423 (2012).
pubmed: 22086058
Benferhat, R. et al. Large-scale chromatin immunoprecipitation with promoter sequence microarray analysis of the interaction of the NSs protein of Rift Valley fever virus with regulatory DNA regions of the host genome. J. Virol. 86, 11333–11344 (2012).
pubmed: 22896612
pmcid: 3457170
Sommer C., Strähle C., Köthe U., Hamprecht F. A. ilastik: Interactive learning and segmentation toolkit. In 8th IEEE International Symposium on Biomedical Imaging (ISBI) Proceedings, 230–233 (2011).
Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185–190 (2017).
pubmed: 28678775
pmcid: 5552202
Biancalana, M. & Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 1804, 1405–1412 (2010).
pubmed: 20399286
pmcid: 2880406
Halfmann R. & Lindquist S. Screening for amyloid aggregation by semi-denaturing detergent-agarose gel electrophoresis. J. Vis. Exp. 17, e838. (2008).
Liu, S. et al. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis. Proc. Natl Acad. Sci. USA 114, E7450–E7459 (2017).
pubmed: 28827318
Monteiro, G. E. R. et al. Mutation of adjacent cysteine residues in the NSs protein of Rift Valley fever virus results in loss of virulence in mice. Virus Res. 249, 31–44 (2018).
pubmed: 29530722
Arhel, N. J. & Charneau, P. Bisarsenical labeling of HIV-1 for real-time fluorescence microscopy. Methods Mol. Biol. 485, 151–159 (2009).
pubmed: 19020824
Billecocq, A. et al. NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J. Virol. 78, 9798–9806 (2004).
pubmed: 15331713
pmcid: 514997
Ikegami, T. et al. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation. PLoS Pathog. 5, e1000287, https://doi.org/10.1371/journal.ppat.1000287 (2009).
doi: 10.1371/journal.ppat.1000287
pubmed: 19197350
pmcid: 2629125
Habjan, M. et al. NSs protein of Rift Valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase. J. Virol. 83, 4365–4375 (2009).
pubmed: 19211744
pmcid: 2668506
Tokuda, S. et al. The genetic basis for susceptibility to Rift Valley fever disease in MBT/Pas mice. Genes Immun. 16, 206–212 (2015).
pubmed: 25569261
Billecocq, A., Vialat, P. & Bouloy, M. Persistent infection of mammalian cells by Rift Valley fever virus. The. J. Gen. Virol. 77(Pt 12), 3053–3062 (1996).
pubmed: 9000097
do Valle, T. Z. et al. A new mouse model reveals a critical role for host innate immunity in resistance to Rift Valley fever. J. Immunol. 185, 6146–6156 (2010).
pubmed: 20937849
Barski M., et al. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments. Elife 6 https://doi.org/10.7554/eLife.29236 (2017).
Cyr, N. et al. A OmegaXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence. Proc. Natl Acad. Sci. USA 112, 6021–6026 (2015).
pubmed: 25918396
Sipe, J. D. et al. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid 23, 209–213 (2016).
pubmed: 27884064
Weiss, K. R., Kimura, Y., Lee, W. C. & Littleton, J. T. Huntingtin aggregation kinetics and their pathological role in a Drosophila Huntington’s disease model. Genetics 190, 581–600 (2012).
pubmed: 22095086
pmcid: 3276644
Gremer, L. et al. Fibril structure of amyloid-beta(1-42) by cryo-electron microscopy. Science 358, 116–119 (2017).
pubmed: 28882996
pmcid: 6080689
Hong, D. P., Gozu, M., Hasegawa, K., Naiki, H. & Goto, Y. Conformation of beta 2-microglobulin amyloid fibrils analyzed by reduction of the disulfide bond. J. Biol. Chem. 277, 21554–21560 (2002).
pubmed: 11943769
Narayanan, A. et al. Reactive oxygen species activate NFkappaB (p65) and p53 and induce apoptosis in RVFV infected liver cells. Virology 449, 270–286 (2014).
pubmed: 24418562
Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 86, 715–748 (2017).
pubmed: 28441057
Baer, A. et al. Induction of DNA damage signaling upon Rift Valley fever virus infection results in cell cycle arrest and increased viral replication. J. Biol. Chem. 287, 7399–7410 (2012).
pubmed: 22223653
pmcid: 3293538
Li S., et al. NSs filament formation is important but not sufficient for RVFV virulence in vivo. Viruses 11 https://doi.org/10.3390/v11090834 (2019).
Falk, R. H., Comenzo, R. L. & Skinner, M. The systemic amyloidoses. N. Engl. J. Med. 337, 898–909 (1997).
pubmed: 9302305
Adams, M. J. et al. Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Arch. Virol. 162, 2505–2538 (2017).
pubmed: 28434098
Higginbotham, J. M. & O’Shea, C. C. Adenovirus E4-ORF3 targets PIAS3 and together with E1B-55K remodels SUMO interactions in the nucleus and at virus genome replication domains. J. Virol. 89, 10260–10272 (2015).
pubmed: 26223632
pmcid: 4580165
Erickson, K. D. et al. Virion assembly factories in the nucleus of polyomavirus-infected cells. PLoS Pathog. 8, e1002630, https://doi.org/10.1371/journal.ppat.1002630 (2012).
doi: 10.1371/journal.ppat.1002630
pubmed: 22496654
pmcid: 3320610
Kiselev, N. A. & Klug, A. The structure of viruses of the papilloma-polyoma type. V. Tubular variants built of pentamers. J. Mol. Biol. 40, 155–171 (1969).
pubmed: 4312360
Laughlin, L. W., Meegan, J. M., Strausbaugh, L. J., Morens, D. M. & Watten, R. H. Epidemic Rift Valley fever in Egypt: observations of the spectrum of human illness. Trans. R. Soc. Trop. Med. Hyg. 73, 630–633 (1979).
pubmed: 575446
Muller, R. et al. Characterization of clone 13, a naturally attenuated avirulent isolate of Rift Valley fever virus, which is altered in the small segment. Am. J. Trop. Med. Hyg. 53, 405–411 (1995).
pubmed: 7485695
Billecocq, A. et al. RNA polymerase I-mediated expression of viral RNA for the rescue of infectious virulent and avirulent Rift Valley fever viruses. Virology 378, 377–384 (2008).
pubmed: 18614193
pmcid: 2577904
Leger, P. et al. Dicer-2- and Piwi-mediated RNA interference in Rift Valley fever virus-infected mosquito cells. J. Virol. 87, 1631–1648 (2013).
pubmed: 23175368
pmcid: 3554164
Lozach, P. Y. et al. DC-SIGN as a receptor for phleboviruses. Cell Host Microbe 10, 75–88 (2011).
pubmed: 21767814
Kukulski, W. et al. Precise, correlated fluorescence microscopy and electron tomography of lowicryl sections using fluorescent fiducial markers. Methods Cell Biol. 111, 235–257 (2012).
pubmed: 22857932
Paul-Gilloteaux, P. et al. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat. Methods 14, 102–103 (2017).
pubmed: 28139674
de Chaumont, F. et al. Computerized video analysis of social interactions in mice. Nat. Methods 9, 410–417 (2012).
pubmed: 22388289
Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).
pubmed: 19346324
pmcid: 2682522