Impact of dual-layer solid-electrolyte interphase inhomogeneities on early-stage defect formation in Si electrodes.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
01 Jul 2020
01 Jul 2020
Historique:
received:
02
12
2019
accepted:
13
06
2020
entrez:
3
7
2020
pubmed:
3
7
2020
medline:
3
7
2020
Statut:
epublish
Résumé
While intensive efforts have been devoted to studying the nature of the solid-electrolyte interphase (SEI), little attention has been paid to understanding its role in the mechanical failures of electrodes. Here we unveil the impact of SEI inhomogeneities on early-stage defect formation in Si electrodes. Buried under the SEI, these early-stage defects are inaccessible by most surface-probing techniques. With operando full field diffraction X-ray microscopy, we observe the formation of these defects in real time and connect their origin to a heterogeneous degree of lithiation. This heterogeneous lithiation is further correlated to inhomogeneities in topography and lithium-ion mobility in both the inner- and outer-SEI, thanks to a combination of operando atomic force microscopy, electrochemical strain microscopy and sputter-etched X-ray photoelectron spectroscopy. Our multi-modal study bridges observations across the multi-level interfaces (Si/Li
Identifiants
pubmed: 32612261
doi: 10.1038/s41467-020-17104-9
pii: 10.1038/s41467-020-17104-9
pmc: PMC7329811
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3283Références
Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).
pubmed: 18256660
Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008).
pubmed: 18654447
Notten, P. H. L., Roozeboom, F., Niessen, R. A. H. & Baggetto, L. 3-D integrated all-solid-state rechargeable batteries. Adv. Mater. 19, 4564–4567 (2007).
Jiménez, A. R. et al. A step toward high-energy silicon-based thin film lithium ion batteries. ACS Nano 11, 4731–4744 (2017).
Wen, C. J. & Huggins, R. A. Chemical diffusion in intermediate phases in the lithium-silicon system. J. Solid State Chem. 37, 271–278 (1981).
McDowell, M. T., Lee, S. W., Nix, W. D. & Cui, Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4985 (2013).
pubmed: 24038172
Baggetto, L., Niessen, R. A. H. & Notten, P. H. L. On the activation and charge transfer kinetics of evaporated silicon electrode/electrolyte interfaces. Electrochim. Acta 54, 5937–5941 (2009).
Bridel, J.-S., Azaïs, T., Morcrette, M., Tarascon, J.-M. & Larcher, D. In situ observation and long-term reactivity of Si/C/CMC composites electrodes for Li-ion batteries. J. Electrochem. Soc. 158, A750–A759 (2011).
Chen, C. et al. Origin of degradation in Si-based all-solid-state Li-ion microbatteries. Adv. Energy Mater. 8, 181430 (2018).
Liu, X. H. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011).
pubmed: 21707052
Lee, S. W., McDowell, M. T., Berla, L. A., Nix, W. D. & Cui, Y. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl Acad. Sci. U. S. A. 109, 4080–4085 (2012).
pubmed: 22371565
pmcid: 3306693
Goldman, J. L., Long, B. R., Gewirth, A. A. & Nuzzo, R. G. Strain anisotropies and self-limiting capacities in single-crystalline 3D silicon microstructures: models for high energy density lithium-ion battery anodes. Adv. Funct. Mater. 21, 2412–2422 (2011).
Pharr, M., Suo, Z. & Vlassak, J. J. Measurements of the fracture energy of lithiated silicon electrodes of Li-ions batteries. Nano Lett. 13, 5570–5577 (2013).
pubmed: 24099504
Zeng, Z. et al. In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-raman spectroscopy. Nano Energy 22, 105–110 (2016).
Tardif, S. et al. Operando raman spectroscopy and synchrotron X-ray diffraction of lithiation/delithiation in silicon nanoparticle anodes. ACS Nano 11, 11306–11316 (2017).
pubmed: 29111665
Zhao, K. et al. Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc. 159, A238–A243 (2012).
Liu, X. H. et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012).
pubmed: 22217200
Wu, Q. et al. Investigation of Si thin films as anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 3487–3494 (2018).
pubmed: 29298378
Hilhorst, J., Marschall, F., Tran Thi, T. N., Last, A. & Schülli, T. U. Full-field X-ray diffraction microscopy using polymeric compound refractive lenses. J. Appl. Crystallogr 47, 1882–1888 (2014).
Leake, S. J. et al. The nanodiffraction beamline ID01/ESRF: a microscope for imaging strain and structure. J. Synchrotron Radiat. 26, 571–584 (2019).
pubmed: 30855270
pmcid: 6412176
Bagetto, L., Niessen, R. A. H., Roozeboom, F. & Notten, P. H. L. High energy density all-solid-state batteries: a challenging concept towards 3D integration. Adv. Funct. Mater. 18, 1057–1066 (2008).
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).
pubmed: 15669157
Pletikapić, G., Berquand, A., Radić, T. M. & Svetličić, V. Quantative nanaomechanical mapping of marine diatom in seawater using peak force tapping atomic force microscopy. J. Phycol. 48, 174–185 (2012).
pubmed: 27009662
Peled, E. & Menkin, S. Review-SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).
Edström, K., Herstedt, M. & Abraham, D. P. A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. J. Power Sources 153, 380–384 (2006).
Li, D. et al. Degradation mechanisms of C
Li, D. et al. Modeling the SEI-formation on graphite electrodes in LiFePO
Zhang, Y., Du, N. & Yang, D. Design superior solid electrolyte interface on silicon anodes for high-performance lithium-ion battery. Nanoscale 11, 19086–19104 (2019).
pubmed: 31538999
Zheng, J. et al. 3D visualization of inhomogeneous multi-layered structure and Young’s modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 16, 13229–13238 (2014).
pubmed: 24869920
Wang, A., Kadam, S., Li, H., Shi, S. & Qi, Y. Review on modeling of anode solid electrolyte interphase (SEI) for lithium-ion batteries. Npj Comput. Mater. 4, 15 (2018).
Benitez, L., Cristancho, D., Seminario, J. M., Martinez de la Hoz, J. M. & Balbuena, P. B. Electron transfer through solid-electrolyte-interphase layers formed on Si anodes of Li-ion batteries. Electrochim. Acta 140, 250–257 (2014).
Soto, F. A., Ma, Y., Martinez de la Hoz, J. M., Seminario, J. M. & Balbuena, P. B. Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries. Chem. Mater. 27, 7990–8000 (2015).
Verma, P., Maire, P. & Novák, P. A review of features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).
Yang, L. et al. Changing of SEI film and electrochemical properties about MCMB electrodes during long-term charge/discharge cycles. J. Electrochem. Soc. 160, A2093–A2099 (2013).
Guan, P., Liu, L. & Lin, X. Simulation and experiment on solid electrolyte interphase (SEI) morphology evolution and lithium-ion diffusion. J. Electrochem. Soc. 162, A1798–A1808 (2015).
Balke, N. et al. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat. Nanotechnol. 5, 749–754 (2010).
pubmed: 20802493
Kalinin, S. et al. Li-ion dynamics and reactivity on the nanoscale. Mater. Today 14, 548–558 (2014).
Schӧn, N. et al. Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li
Shi, S., Qi, Y., Li, H. Jr. & Hector, LG. Defect thermodynamics and diffusion mechanisms in Li
Borodin, O., Zhang, G. V., Ross, P. N. & Xu, K. Molecular dynamics simulations and experimental study of lithium ion transport in dilithium ethylene dicarbonate. J. Phys. Chem. C. 117, 7433–7444 (2013).
Bedrov, D., Borodin, O. & Hooper, J. B. Li
Pan, J., Cheng, Y.-T. & Qi, Y. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. Phys. Rev. B 91, 134116 (2015).
Schroder, K. W., Dylla, A. G., Harris, S. J., Webb, L. J. & Stevenson, K. J. Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 21510–21524 (2014).
pubmed: 25402271
Cao, C. et al. Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries. Joule 3, 762–781 (2019).
Lee, S.-J. et al. Stress effect on cycle properties of the silicon thin-film anode. J. Power Sources 97–98, 191–193 (2001).
Réthoré, J., Zheng, H., Li, H., Li, J. & Aifantis, K. E. A Multiphysics model that can capture crack patterns in Si thin films based on their microstructure. J. Power Sources 400, 383–391 (2018).
Marschall, F., Last, A., Simon, M., Vogt, H. & Mohr, J. Simulation of aperture-optimised refractive lenses for hard X-ray full field microscopy. Opt. Express 24, 10880–10889 (2016).
pubmed: 27409908