Combined plasmonic Au-nanoparticle and conducting metal oxide high-temperature optical sensing with LSTO.
Journal
Nanoscale
ISSN: 2040-3372
Titre abrégé: Nanoscale
Pays: England
ID NLM: 101525249
Informations de publication
Date de publication:
16 Jul 2020
16 Jul 2020
Historique:
pubmed:
3
7
2020
medline:
3
7
2020
entrez:
3
7
2020
Statut:
ppublish
Résumé
Fiber optic sensor technology offers several advantages for harsh-environment applications. However, the development of optical gas sensing layers that are stable under harsh environmental conditions is an ongoing research challenge. In this work, electronically conducting metal oxide lanthanum-doped strontium titanate (LSTO) films embedded with gold nanoparticles are examined as a sensing layer for application in reducing gas flows at high temperature (600-800 °C). A strong localized surface plasmon resonance (LSPR) based response to hydrogen is demonstrated in the visible region of the spectrum, while a Drude free electron-based response is observed in the near-IR. Characteristics of these responses are studied both on planar glass substrates and on silica fibers. Charge transfer between the oxide film and the gold nanoparticles is explored as a possible mechanism governing the Au LSPR response and is considered in terms of the corresponding properties of the conducting metal oxide-based matrix phase. Principal component analysis is applied to the combined plasmonic and free-carrier based response over a range of temperatures and hydrogen concentrations. It is demonstrated that the combined visible and near-IR response of these films provides improved versatility for multiwavelength interrogation, as well as improved discrimination of important process parameters (concentration and temperature) through application of multivariate analysis techniques.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM