Maternal and fetal cardiovascular and metabolic effects of intra-operative uterine handling under general anesthesia during pregnancy in sheep.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 07 2020
02 07 2020
Historique:
received:
02
04
2020
accepted:
05
06
2020
entrez:
4
7
2020
pubmed:
4
7
2020
medline:
16
12
2020
Statut:
epublish
Résumé
A cohort study of 6,500,000 human pregnancies showed an increased risk of adverse fetal outcomes following abdominal but not non-abdominal surgery under general anesthesia. This may be the consequence of uterine handling during abdominal surgery. However, there are no data on any effects on the cardiometabolic physiology of the fetus or mother in response to uterine manipulation in otherwise healthy pregnancy. Consequently, 9 sheep in late gestation were anesthetized with isofluorane and maternal and fetal catheters and flow probes were implanted to determine cardiovascular and metabolic changes during uterine handling. Uterine handling led to an acute increase in uterine artery vascular resistance, fetal peripheral vasoconstriction, a reduction in oxygen delivery to the femoral circulation, worsening fetal acidosis. There was no evidence of systemic fetal hypoxia, or changes in fetal heart rate, carotid blood flow or carotid oxygen delivery. Therefore, the data support that uterine handling during abdominal surgery under general anesthesia can impact adversely on fetal cardiometabolic health. This may provide a potential explanation linking adverse fetal outcomes in abdominal compared with non-abdominal surgery during pregnancy. The data have important implications for human fetal surgery where the uterus is handled, as operative procedures during late gestation under general maternal anesthesia become more prevalent.
Identifiants
pubmed: 32616745
doi: 10.1038/s41598-020-67714-y
pii: 10.1038/s41598-020-67714-y
pmc: PMC7331497
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10867Subventions
Organisme : British Heart Foundation
ID : FS/12/74/29778
Pays : United Kingdom
Organisme : British Heart Foundation
ID : RG/11/16/29260
Pays : United Kingdom
Organisme : British Heart Foundation
ID : RG/17/8/32924
Pays : United Kingdom
Références
Balinskaite, V. et al. The risk of adverse pregnancy outcomes following nonobstetric surgery during pregnancy: estimates from a retrospective cohort study of 6.5 million pregnancies. Ann. Surg. 266, 260–266. https://doi.org/10.1097/SLA.0000000000001976 (2017).
doi: 10.1097/SLA.0000000000001976
pubmed: 27617856
Cohen-Kerem, R., Railton, C., Oren, D., Lishner, M. & Koren, G. Pregnancy outcome following non-obstetric surgical intervention. Am. J. Surg. 190, 467–473. https://doi.org/10.1016/j.amjsurg.2005.03.033 (2005).
doi: 10.1016/j.amjsurg.2005.03.033
pubmed: 16105538
Oelsner, G. et al. Pregnancy outcome after laparoscopy or laparotomy in pregnancy. J. Am. Assoc. Gynecol. Laparosc. 10, 200–204 (2003).
doi: 10.1016/S1074-3804(05)60299-X
Giussani, D. A., Spencer, J. A., Moore, P. J., Bennet, L. & Hanson, M. A. Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J. Physiol. 461, 431–449 (1993).
doi: 10.1113/jphysiol.1993.sp019521
Allison, B. J. et al. Fetal in vivo continuous cardiovascular function during chronic hypoxia. J. Physiol. 594, 1247–1264. https://doi.org/10.1113/jp271091 (2016).
doi: 10.1113/jp271091
pubmed: 26926316
pmcid: 4771786
Shaw, C. J. et al. Altered autonomic control of heart rate variability in the chronically hypoxic fetus. J. Physiol. https://doi.org/10.1113/JP275659 (2018).
doi: 10.1113/JP275659
pubmed: 29604064
pmcid: 6265555
Varcoe, T. J. et al. Considerations in selecting postoperative analgesia for pregnant sheep following fetal instrumentation surgery. Anim. Front. 9, 60–67. https://doi.org/10.1093/af/vfz019 (2019).
doi: 10.1093/af/vfz019
pubmed: 32002263
pmcid: 6952008
Jellyman, J. K., Gardner, D. S., Fowden, A. L. & Giussani, D. A. Effects of dexamethasone on the uterine and umbilical vascular beds during basal and hypoxemic conditions in sheep. Am. J. Obstet. Gynecol. 190, 825–835. https://doi.org/10.1016/j.ajog.2003.09.046 (2004).
doi: 10.1016/j.ajog.2003.09.046
pubmed: 15042021
Matthews, J. N., Altman, D. G., Campbell, M. J. & Royston, P. Analysis of serial measurements in medical research. BMJ 300, 230–235 (1990).
doi: 10.1136/bmj.300.6719.230
Giussani, D. A. The fetal brain sparing response to hypoxia: physiological mechanisms. J. Physiol. 594, 1215–1230. https://doi.org/10.1113/jp271099 (2016).
doi: 10.1113/jp271099
pubmed: 26496004
pmcid: 4721497
Rosen, M. A. Management of anesthesia for the pregnant surgical patient. Anesthesiology 91, 1159–1163 (1999).
doi: 10.1097/00000542-199910000-00033
McClaine, R. J. et al. General anesthesia improves fetal cerebral oxygenation without evidence of subsequent neuronal injury. J. Cereb. Blood Flow Metab. 25, 1060–1069. https://doi.org/10.1038/sj.jcbfm.9600094 (2005).
doi: 10.1038/sj.jcbfm.9600094
pubmed: 15758947
McClaine, R. J. et al. A description of the preterm fetal sheep systemic and central responses to maternal general anesthesia. Anesth. Analg. 104, 397–406. https://doi.org/10.1213/01.ane.0000252459.43933.59 (2007).
doi: 10.1213/01.ane.0000252459.43933.59
pubmed: 17242098
Biehl, D. R., Yarnell, R., Wade, J. G. & Sitar, D. The uptake of isoflurane by the foetal lamb in utero: effect on regional blood flow. Can. Anaesth. Soc. J. 30, 581–586 (1983).
doi: 10.1007/BF03015226
Gaynor, J. S., Wertz, E. M., Alvis, M. & Turner, A. S. A comparison of the haemodynamic effects of propofol and isoflurane in pregnant ewes. J. Vet. Pharmacol. Ther. 21, 69–73 (1998).
doi: 10.1046/j.1365-2885.1998.00110.x
Baker, B. W., Hughes, S. C., Shnider, S. M., Field, D. R. & Rosen, M. A. Maternal anesthesia and the stressed fetus: effects of isoflurane on the asphyxiated fetal lamb. Anesthesiology 72, 65–70 (1990).
doi: 10.1097/00000542-199001000-00013
Bachman, C. R., Biehl, D. R., Sitar, D., Cumming, M. & Pucci, W. Isoflurane potency and cardiovascular effects during short exposures in the foetal lamb. Can. Anaesth. Soc. J. 33, 41–47 (1986).
doi: 10.1007/BF03010907
Palahniuk, R. J. & Shnider, S. M. Maternal and fetal cardiovascular and acid-base changes during halothane and isoflurane anesthesia in the pregnant ewe. Anesthesiology 41, 462–472 (1974).
doi: 10.1097/00000542-197411000-00010
Boyle, D. W., Meschia, G. & Wilkening, R. B. Metabolic adaptation of fetal hindlimb to severe, nonlethal hypoxia. Am. J. Physiol. 263, R1130-1135 (1992).
pubmed: 1443231
Gardner, D. S. & Giussani, D. A. Enhanced umbilical blood flow during acute hypoxemia after chronic umbilical cord compression: a role for nitric oxide. Circulation 108, 331–335. https://doi.org/10.1161/01.cir.0000080323.40820.a1 (2003).
doi: 10.1161/01.cir.0000080323.40820.a1
pubmed: 12835209
Allanson, E. R., Waqar, T., White, C., Tunçalp, Ö & Dickinson, J. E. Umbilical lactate as a measure of acidosis and predictor of neonatal risk: a systematic review. BJOG 124, 584–594. https://doi.org/10.1111/1471-0528.14306 (2017).
doi: 10.1111/1471-0528.14306
pubmed: 27704703
Bocking, A. D. et al. Circulatory responses to prolonged hypoxemia in fetal sheep. Am. J. Obstet. Gynecol. 159, 1418–1424 (1988).
doi: 10.1016/0002-9378(88)90567-4
Stein, P., White, S. E., Homan, J., Hanson, M. A. & Bocking, A. D. Altered fetal cardiovascular responses to prolonged hypoxia after sinoaortic denervation. Am. J. Physiol. 276, R340-346 (1999).
pubmed: 9950910
Cohn, H. E., Sacks, E. J., Heymann, M. A. & Rudolph, A. M. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am. J. Obstet. Gynecol. 120, 817–824 (1974).
doi: 10.1016/0002-9378(74)90587-0
Fletcher, A. J., Edwards, C. M., Gardner, D. S., Fowden, A. L. & Giussani, D. A. Neuropeptide Y in the sheep fetus: effects of acute hypoxemia and dexamethasone during late gestation. Endocrinology 141(11), 3976–3982. https://doi.org/10.1210/endo.141.11.7770 (2000).
Hoka, S., Bosnjak, Z. J., Arimura, H. & Kampine, J. P. Regional venous outflow, blood volume, and sympathetic nerve activity during severe hypoxia. Am. J. Physiol. 256, H162-170. https://doi.org/10.1152/ajpheart.1989.256.1.H162 (1989).
doi: 10.1152/ajpheart.1989.256.1.H162
pubmed: 2912179
Hon, E. H. The electronic evaluation of the fetal heart rate; preliminary report. Am. J. Obstet. Gynecol. 75, 1215–1230 (1958).
doi: 10.1016/0002-9378(58)90707-5
Barnard, J. M., Chaffin, D., Droste, S., Tierney, A. & Phernetton, T. Fetal response to carbon dioxide pneumoperitoneum in the pregnant ewe. Obstet. Gynecol. 85, 669–674 (1995).
doi: 10.1016/0029-7844(95)00023-K
Hill, E. P., Power, G. G. & Longo, L. D. A mathematical model of carbon dioxide transfer in the placenta and its interaction with oxygen. Am. J. Physiol. 224(2), 283–299 (1973).
doi: 10.1152/ajplegacy.1973.224.2.283