Harmonization of postmortem donations for pediatric brain tumors and molecular characterization of diffuse midline gliomas.
Adolescent
Adult
Animals
Autopsy
Biomarkers, Tumor
/ genetics
Brain Neoplasms
/ genetics
Child
Child, Preschool
Female
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Glioma
/ genetics
Histones
/ genetics
Humans
Infant
Male
Mice, Inbred NOD
Mice, SCID
Mutation
Tumor Cells, Cultured
Xenograft Model Antitumor Assays
Young Adult
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 07 2020
02 07 2020
Historique:
received:
07
04
2020
accepted:
11
06
2020
entrez:
4
7
2020
pubmed:
4
7
2020
medline:
2
12
2020
Statut:
epublish
Résumé
Children diagnosed with brain tumors have the lowest overall survival of all pediatric cancers. Recent molecular studies have resulted in the discovery of recurrent driver mutations in many pediatric brain tumors. However, despite these molecular advances, the clinical outcomes of high grade tumors, including H3K27M diffuse midline glioma (H3K27M DMG), remain poor. To address the paucity of tissue for biological studies, we have established a comprehensive protocol for the coordination and processing of donated specimens at postmortem. Since 2010, 60 postmortem pediatric brain tumor donations from 26 institutions were coordinated and collected. Patient derived xenograft models and cell cultures were successfully created (76% and 44% of attempts respectively), irrespective of postmortem processing time. Histological analysis of mid-sagittal whole brain sections revealed evidence of treatment response, immune cell infiltration and the migratory path of infiltrating H3K27M DMG cells into other midline structures and cerebral lobes. Sequencing of primary and disseminated tumors confirmed the presence of oncogenic driver mutations and their obligate partners. Our findings highlight the importance of postmortem tissue donations as an invaluable resource to accelerate research, potentially leading to improved outcomes for children with aggressive brain tumors.
Identifiants
pubmed: 32616776
doi: 10.1038/s41598-020-67764-2
pii: 10.1038/s41598-020-67764-2
pmc: PMC7331588
doi:
Substances chimiques
Biomarkers, Tumor
0
Histones
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10954Références
Altekruse SF, K.C., Krapcho M, Neyman N, Aminou R, Waldron W, Ruhl J, Howlader N, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Cronin K, Chen HS, Feuer EJ, Stinchcomb DG, Edwards BK (eds). SEER Cancer Statistics Review: 1975–2007. (2010).
States, C.B.T.R.o.t.U. Statistical Report: Primary brain tumors in the United States, 2004–2007 (2011).
Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. 21, v1–v100 (2019).
pubmed: 31675094
pmcid: 6823730
Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849 (2019).
pubmed: 31327527
pmcid: 6703186
Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).
pubmed: 23079654
Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).
pubmed: 24120142
pmcid: 3910500
Mistry, M. et al. BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J. Clin. Oncol. 33, 1015–1022 (2015).
pubmed: 25667294
pmcid: 4356711
Wu, G. et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet. 46, 444–450 (2014).
pubmed: 24705251
pmcid: 4056452
Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).
pubmed: 22286061
Mackay, A. et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32, 520–537 (2017).
pubmed: 28966033
pmcid: 5637314
Albert, C. M., Davis, J. L., Federman, N., Casanova, M. & Laetsch, T. W. TRK fusion cancers in children: a clinical review and recommendations for screening. J. Clin. Oncol. 37, 513–524 (2019).
pubmed: 30592640
Clarke, M. et al. Infant high grade gliomas comprise multiple subgroups characterized by novel targetable gene fusions and favorable outcomes. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-19-1030 (2020).
doi: 10.1158/2159-8290.CD-19-1030
pubmed: 32238360
Hoffman, L. M. et al. Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the international and European society for pediatric oncology DIPG registries. J. Clin. Oncol. 36, 1963–1972 (2018).
pubmed: 29746225
pmcid: 6075859
Filbin, M. G. et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360, 331–335 (2018).
pubmed: 29674595
pmcid: 5949869
Nagaraja, S. et al. Transcriptional dependencies in diffuse intrinsic pontine glioma. Cancer Cell 31, 635–652 (2017).
pubmed: 28434841
pmcid: 5462626
Saratsis, A. M. et al. Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathol. 127, 881–895 (2014).
pubmed: 24297113
Nikbakht, H. et al. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat. Commun. 7, 11185 (2016).
pubmed: 27048880
pmcid: 4823825
Paugh, B. S. et al. Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J. Clin. Oncol. 29, 3999–4006 (2011).
pubmed: 21931021
pmcid: 3209696
Chan, K. M. et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 27, 985–990 (2013).
pubmed: 23603901
pmcid: 3656328
Castel, D. et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 130, 815–827 (2015).
pubmed: 26399631
pmcid: 4654747
van Zanten, S. E. M. V. et al. External validation of the diffuse intrinsic pontine glioma survival prediction model: a collaborative report from the International DIPG Registry and the SIOPE DIPG Registry. J. Neurooncol. 134, 231–240 (2017).
Baugh, J. et al. The international diffuse intrinsic pontine glioma registry: an infrastructure to accelerate collaborative research for an orphan disease. J. Neurooncol. 132, 323–331 (2017).
pubmed: 28093680
pmcid: 6343830
Kambhampati, M. et al. A standardized autopsy procurement allows for the comprehensive study of DIPG biology. Oncotarget 6, 12740 (2015).
pubmed: 25749048
pmcid: 4494970
Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).
pubmed: 22286216
pmcid: 3288377
Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).
pubmed: 27157931
Nikbakht, H. et al. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat. Commun. 7, 1–8 (2016).
Vinci, M. et al. Functional diversity and cooperativity between subclonal populations of pediatric glioblastoma and diffuse intrinsic pontine glioma cells. Nat. Med. 24, 1204–1215 (2018).
pubmed: 29967352
pmcid: 6086334
Hoffman, L. M. et al. Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol. Commun. 4, 1 (2016).
pubmed: 26727948
pmcid: 4700584
Fontebasso, A. M. et al. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat. Genet. 46, 462–466 (2014).
pubmed: 24705250
pmcid: 4282994
Buczkowicz, P. et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat. Genet. 46, 451–456 (2014).
pubmed: 24705254
pmcid: 3997489
Taylor, K. R. et al. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat. Genet. 46, 457–461 (2014).
pubmed: 24705252
pmcid: 4018681
Pratt, D. et al. Diffuse intrinsic pontine glioma-like tumor with EZHIP expression and molecular features of PFA ependymoma. Acta Neuropathol. Commun. 8, 37 (2020).
pubmed: 32197665
pmcid: 7083001
Mueller, S. et al. A pilot precision medicine trial for children with diffuse intrinsic pontine glioma-PNOC003: a report from the Pacific Pediatric Neuro-Oncology Consortium. Int. J. Cancer 145, 1889–1901 (2019).
pubmed: 30861105
Bugiani, M. et al. Deceptive morphologic and epigenetic heterogeneity in diffuse intrinsic pontine glioma. Oncotarget 8, 60447–60452 (2017).
pubmed: 28947983
pmcid: 5601151
Grasso, C. S. et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat. Med. 21, 555–559 (2015).
pubmed: 25939062
pmcid: 4862411
Tsoli, M. et al. Correction to: International experience in the development of patient-derived xenograft models of diffuse intrinsic pontine glioma. J. Neurooncol. 141, 265 (2019).
pubmed: 30484110
Lin, G. L. & Monje, M. A protocol for rapid post-mortem cell culture of diffuse intrinsic pontine glioma (DIPG). J. Vis. Exp. 121, e55360 (2017).
Broniscer, A. et al. Prospective collection of tissue samples at autopsy in children with diffuse intrinsic pontine glioma. Cancer 116, 4632–4637 (2010).
pubmed: 20589749
pmcid: 2989604
Caretti, V. et al. Implementation of a multi-institutional diffuse intrinsic pontine glioma autopsy protocol and characterization of a primary cell culture. Neuropathol. Appl. Neurobiol. 39, 426–436 (2012).
Caretti, V. et al. Subventricular spread of diffuse intrinsic pontine glioma. Acta Neuropathol. 128, 605–607 (2014).
pubmed: 24929912
pmcid: 4161623
Lin, D. C. et al. The genomic landscape of nasopharyngeal carcinoma. Nat. Genet. 46, 866–871 (2014).
pubmed: 24952746
El-Ayadi, M. et al. Concurrent IDH1 and SMARCB1 mutations in pediatric medulloblastoma: a case report. Front. Neurol. 9, 398 (2018).
pubmed: 29971034
pmcid: 6018091
Zhang, H., Xiang, B., Chen, H., Chen, X. & Cai, T. A novel deletion mutation in KMT2A identified in a child with ID/DD and blood eosinophilia. BMC Med. Genet. 20, 38 (2019).
pubmed: 30841869
pmcid: 6402113
Tsoli, M. et al. International experience in the development of patient-derived xenograft models of diffuse intrinsic pontine glioma. J. Neurooncol. 141, 253–263 (2019).
pubmed: 30446898
Saratsis, A. M. et al. Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathol. 127, 881–895 (2013).
pubmed: 24297113
pmcid: 4028366
Buczkowicz, P. & Hawkins, C. Pathology, molecular genetics and epigenetics of diffuse intrinsic pontine glioma. Front. Oncol. 5, 147 (2015).
pubmed: 26175967
pmcid: 4485076
Ballester, L. Y. et al. Morphologic characteristics and immunohistochemical profile of diffuse intrinsic pontine gliomas. Am. J. Surg. Pathol. 37, 1357–1364 (2013).
pubmed: 24076776
pmcid: 3787318
Panditharatna, E. et al. Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy. Clin. Cancer Res. 24, 5850–5859 (2018).
pubmed: 30322880
pmcid: 6279526