Effect of rice straw and swine manure biochar on N
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 07 2020
02 07 2020
Historique:
received:
16
01
2020
accepted:
09
06
2020
entrez:
4
7
2020
pubmed:
4
7
2020
medline:
4
7
2020
Statut:
epublish
Résumé
We analyzed the effects of rice straw biochar (RSBC) and swine manure biochar (SMBC) on N
Identifiants
pubmed: 32616844
doi: 10.1038/s41598-020-67705-z
pii: 10.1038/s41598-020-67705-z
pmc: PMC7331641
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10843Références
Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N
doi: 10.1126/science.1176985
pubmed: 19713491
Zaman, M. & Nguyen, M. L. How application timings of urease and nitrification inhibitors affect N losses from urine patches in pastoral system. Agric. Ecosyst. Environ. 156, 37–48. https://doi.org/10.1016/j.agee.2012.04.025 (2012).
doi: 10.1016/j.agee.2012.04.025
Hagemann, N. et al. Does soil aging affect the N
doi: 10.1111/gcbb.12390
Liu, S., Qin, Y., Zou, J. & Liu, Q. Effects of water regime during rice-growing season on annual direct N
doi: 10.1016/j.scitotenv.2009.11.002
pubmed: 19926115
Domene, X., Enders, A., Hanley, K. & Lehmann, J. Ecotoxicological characterization of biochars: Role of feedstock and pyrolysis temperature. Sci. Total Environ. 512–513, 552–561. https://doi.org/10.1016/j.scitotenv.2014.12.035 (2015).
doi: 10.1016/j.scitotenv.2014.12.035
pubmed: 25647370
Li, H. B. et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 178, 466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072 (2017).
doi: 10.1016/j.chemosphere.2017.03.072
pubmed: 28342995
Liu, X. Y. et al. Can biochar amendment be an ecological engineering technology to depress N
doi: 10.1016/j.ecoleng.2012.01.016
Case, S. D. C., Uno, H., Nakajima, Y., Stoumann Jensen, L. & Akiyama, H. Bamboo biochar does not affect paddy soil N
doi: 10.1002/jpln.201600477
Nelissen, V., Rütting, T., Huygens, D., Ruysschaert, G. & Boeckx, P. Temporal evolution of biochar’s impact on soil nitrogen processes—A
doi: 10.1111/gcbb.12156
Sun, X., Zhong, T., Zhang, L., Zhang, K. & Wu, W. Reducing ammonia volatilization from paddy field with rice straw derived biochar. Sci. Total Environ. 660, 512–518. https://doi.org/10.1016/j.scitotenv.2018.12.450 (2019).
doi: 10.1016/j.scitotenv.2018.12.450
pubmed: 30640118
Wang, Y. Q. et al. Differentiated mechanisms of biochar mitigating straw-induced greenhouse gas emissions in two contrasting paddy soils. Front. Microbiol. 9, 2566. https://doi.org/10.3389/fmicb.2018.02566 (2018).
doi: 10.3389/fmicb.2018.02566
pubmed: 30483220
pmcid: 6243033
Wang, J., Zhang, M., Xiong, Z., Liu, P. & Pan, G. Effects of biochar addition on N
doi: 10.1007/s00374-011-0595-8
Maucieri, C., Zhang, Y., McDaniel, M. D., Borin, M. & Adams, M. A. Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting. Geoderma 307, 267–276. https://doi.org/10.1016/j.geoderma.2017.07.028 (2017).
doi: 10.1016/j.geoderma.2017.07.028
Lin, Y. et al. Wheat straw-derived biochar amendment stimulated N
doi: 10.1016/j.soilbio.2017.06.001
Angst, T. E., Six, J., Reay, D. S. & Sohi, S. P. Impact of pine chip biochar on trace greenhouse gas emissions and soil nutrient dynamics in an annual ryegrass system in California. Agric. Ecosyst. Environ. 191, 17–26. https://doi.org/10.1016/j.agee.2014.03.009 (2014).
doi: 10.1016/j.agee.2014.03.009
Harter, J. et al. Gas entrapment and microbial N
doi: 10.1038/srep39574
pubmed: 28008997
pmcid: 5180216
Verhoeven, E. et al. Nitrification and coupled nitrification-denitrification at shallow depths are responsible for early season N
doi: 10.1016/j.soilbio.2018.01.032
Saggar, S. et al. Denitrification and N
doi: 10.1016/j.scitotenv.2012.11.050
pubmed: 23260378
Zhang, Y., Shi, Z., Chen, M., Dong, X. & Zhou, J. Evaluation of simultaneous nitrification and denitrification under controlled conditions by an aerobic denitrifier culture. Bioresour. Technol. 175, 602–605. https://doi.org/10.1016/j.biortech.2014.10.016 (2015).
doi: 10.1016/j.biortech.2014.10.016
pubmed: 25455090
Duan, P., Zhang, X., Zhang, Q., Wu, Z. & Xiong, Z. Field-aged biochar stimulated N
doi: 10.1016/j.scitotenv.2018.06.166
pubmed: 30045510
Zhang, H. et al. Effect of straw and straw biochar on the community structure and diversity of ammonia-oxidizing bacteria and archaea in rice-wheat rotation ecosystems. Sci. Rep. 9, 9367. https://doi.org/10.1038/s41598-019-45877-7 (2019).
doi: 10.1038/s41598-019-45877-7
pubmed: 31249385
pmcid: 6597706
Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V. & Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 206, 46–59. https://doi.org/10.1016/j.agee.2015.03.015 (2015).
doi: 10.1016/j.agee.2015.03.015
Wang, N. et al. Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Sci. Total Environ. 581–582, 689–696. https://doi.org/10.1016/j.scitotenv.2016.12.181 (2017).
doi: 10.1016/j.scitotenv.2016.12.181
pubmed: 28063654
Cayuela, M. L. et al. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 191, 5–16. https://doi.org/10.1016/j.agee.2013.10.009 (2014).
doi: 10.1016/j.agee.2013.10.009
Cao, H. et al. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl. Soil. Ecol. 135, 25–32. https://doi.org/10.1016/j.apsoil.2018.11.002 (2019).
doi: 10.1016/j.apsoil.2018.11.002
Lu, R. K. Soil analytical methods of agronomic chemical. 10–58 (China Agricultural Science and Technology Press, 2000).
Yuan, J.-H., Xu, R.-K. & Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102, 3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018 (2011).
doi: 10.1016/j.biortech.2010.11.018
pubmed: 21112777
Zhang, M., Wang, J., Bai, S. H., Teng, Y. & Xu, Z. Evaluating the effects of phytoremediation with biochar additions on soil nitrogen mineralization enzymes and fungi. Environ. Sci. Pollut. Res. 25, 23106–23116. https://doi.org/10.1007/s11356-018-2425-0 (2018).
doi: 10.1007/s11356-018-2425-0
Feng, Z., Sheng, Y., Cai, F., Wang, W. & Zhu, L. Separated pathways for biochar to affect soil N
doi: 10.1016/j.scitotenv.2018.07.224
pubmed: 30032084
Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L. & Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39, 1224–1235. https://doi.org/10.2134/jeq2009.0138 (2010).
doi: 10.2134/jeq2009.0138
pubmed: 20830910
Zhang, A. et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China.. Agric. Ecosyst. Environ. 139, 469–475. https://doi.org/10.1016/j.agee.2010.09.003 (2010).
doi: 10.1016/j.agee.2010.09.003
Luo, L. et al. The characterization of biochars derived from rice straw and swine manure, and their potential and risk in N and P removal from water. J. Environ. Manag. 245, 1–7. https://doi.org/10.1016/j.jenvman.2019.05.072 (2019).
doi: 10.1016/j.jenvman.2019.05.072
Hale, S. E. et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91, 1612–1619. https://doi.org/10.1016/j.chemosphere.2012.12.057 (2013).
doi: 10.1016/j.chemosphere.2012.12.057
pubmed: 23369636
Nelissen, V., Saha, B. K., Ruysschaert, G. & Boeckx, P. Effect of different biochar and fertilizer types on N
doi: 10.1016/j.soilbio.2013.12.026