Influenza virus infection affects insulin signaling, fatty acid-metabolizing enzyme expressions, and the tricarboxylic acid cycle in mice.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 07 2020
Historique:
received: 28 12 2019
accepted: 08 06 2020
entrez: 4 7 2020
pubmed: 4 7 2020
medline: 18 12 2020
Statut: epublish

Résumé

Although the severity of influenza virus infections has been associated with host energy metabolism, the related mechanisms have not yet been clarified. Here we examined the effects of influenza virus infection on host energy metabolism in mice. After infecting mice with intranasal applications of 500 plaque-forming units of A/Puerto Rico/8/34 (H1N1; PR8) virus, the serum levels of most intermediates in the tricarboxylic acid (TCA) cycle and related metabolic pathways were significantly reduced. These data suggest that substrate supply to the TCA cycle is reduced under these conditions, rather than specific metabolic reactions being inhibited. Then, we focused on glucose and fatty acid metabolism that supply substrates to the TCA cycle. Akt phosphorylation following insulin injections was attenuated in the livers of PR8 virus-infected mice. Furthermore, glucose tolerance tests revealed that the PR8 virus-infected mice showed higher blood glucose levels than the vehicle-inoculated control mice. These results suggest that influenza virus infection impairs insulin signaling, which regulates glucose uptake. However, increases in the hepatic expressions of fatty acid-metabolizing enzymes suggest that fatty acids accumulate in liver cells of infected mice. Collectively, our data indicate that influenza virus infection dysregulates host energy metabolism. This line of investigation provides novel insights into the pathogenesis of influenza.

Identifiants

pubmed: 32616893
doi: 10.1038/s41598-020-67879-6
pii: 10.1038/s41598-020-67879-6
pmc: PMC7331672
doi:

Substances chimiques

Cytokines 0
Fatty Acids 0
Insulin 0
Purines 0
Akt1 protein, mouse EC 2.7.11.1
Proto-Oncogene Proteins c-akt EC 2.7.11.1
Glucose IY9XDZ35W2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

10879

Références

Stöhr, K. Influenza–WHO cares. Lancet Infect. Dis. 2, 517. https://doi.org/10.1016/s1473-3099(02)00366-3 (2002).
doi: 10.1016/s1473-3099(02)00366-3 pubmed: 12206966
Smith, A. G., Sheridan, P. A., Harp, J. B. & Beck, M. A. Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J. Nutr. 137, 1236–1243. https://doi.org/10.1093/jn/137.5.1236 (2007).
doi: 10.1093/jn/137.5.1236 pubmed: 17449587
Valdez, R., Narayan, K. M., Geiss, L. S. & Engelgau, M. M. Impact of diabetes mellitus on mortality associated with pneumonia and influenza among non-Hispanic black and white US adults. Am. J. Public Health 89, 1715–1721. https://doi.org/10.2105/ajph.89.11.1715 (1999).
doi: 10.2105/ajph.89.11.1715 pubmed: 10553394 pmcid: 1508989
Hanslik, T., Boelle, P. Y. & Flahault, A. Preliminary estimation of risk factors for admission to intensive care units and for death in patients infected with A(H1N1)2009 influenza virus, France, 2009–2010. PLoS Curr. 2, RRN1150. https://doi.org/10.1371/currents.rrn1150 (2010).
doi: 10.1371/currents.rrn1150 pubmed: 20228857 pmcid: 2836028
Shinde, A. et al. Increased mortality from influenza infection in long-chain acyl-CoA dehydrogenase knockout mice. Biochem. Biophys. Res. Commun. 497, 700–704. https://doi.org/10.1016/j.bbrc.2018.02.135 (2018).
doi: 10.1016/j.bbrc.2018.02.135 pubmed: 29458021 pmcid: 5850965
Kubota, M. et al. Thermolabile CPT II variants and low blood ATP levels are closely related to severity of acute encephalopathy in Japanese children. Brain Dev. 34, 20–27. https://doi.org/10.1016/j.braindev.2010.12.012 (2012).
doi: 10.1016/j.braindev.2010.12.012 pubmed: 21277129
Arkan, M. C. et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191–198. https://doi.org/10.1038/nm1185 (2005).
doi: 10.1038/nm1185 pubmed: 15685170
Zhao, L. et al. Chronic inflammation aggravates metabolic disorders of hepatic fatty acids in high-fat diet-induced obese mice. Sci. Rep. 5, 10222. https://doi.org/10.1038/srep10222 (2015).
doi: 10.1038/srep10222 pubmed: 25974206 pmcid: 4431481
Beitner, R. & Kalant, N. Stimulation of glycolysis by insulin. J. Biol. Chem. 246, 500–503 (1971).
pubmed: 5542017
Morgan, H. E., Henderson, M. J., Regen, D. M. & Park, C. R. Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J. Biol. Chem. 236, 253–261 (1961).
pubmed: 13772576
Zhang, W. et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 281, 10105–10117. https://doi.org/10.1074/jbc.M600272200 (2006).
doi: 10.1074/jbc.M600272200 pubmed: 16492665
Schwarz, K. B. et al. Role of influenza B virus in hepatic steatosis and mitochondrial abnormalities in a mouse model of Reye syndrome. Hepatology 13, 96–103 (1991).
doi: 10.1002/hep.1840130114
Tarasenko, T. N. et al. Kupffer cells modulate hepatic fatty acid oxidation during infection with PR8 influenza. Biochim Biophys Acta 2391–2401, 2015. https://doi.org/10.1016/j.bbadis.2015.08.021 (1852).
doi: 10.1016/j.bbadis.2015.08.021
Liang, C. P. et al. Increased CD36 protein as a response to defective insulin signaling in macrophages. J. Clin. Invest. 113, 764–773. https://doi.org/10.1172/JCI19528 (2004).
doi: 10.1172/JCI19528 pubmed: 14991075 pmcid: 351316
Kim, J. Y., Tillison, K., Lee, J. H., Rearick, D. A. & Smas, C. M. The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-alpha in 3T3-L1 adipocytes and is a target for transactivation by PPARgamma. Am. J. Physiol. Endocrinol. Metab. 291, E115-127. https://doi.org/10.1152/ajpendo.00317.2005 (2006).
doi: 10.1152/ajpendo.00317.2005 pubmed: 16705060
Yamane, K. et al. Diisopropylamine dichloroacetate, a novel pyruvate dehydrogenase kinase 4 inhibitor, as a potential therapeutic agent for metabolic disorders and multiorgan failure in severe influenza. PLoS ONE 9, e98032. https://doi.org/10.1371/journal.pone.0098032 (2014).
doi: 10.1371/journal.pone.0098032 pubmed: 24865588 pmcid: 4035290
Heller, A. R. et al. Adenosine A1 and A2 receptor agonists reduce endotoxin-induced cellular energy depletion and oedema formation in the lung. Eur. J. Anaesthesiol. 24, 258–266. https://doi.org/10.1017/S026502150600144X (2007).
doi: 10.1017/S026502150600144X pubmed: 17094869
Cui, L. et al. Serum metabolome and lipidome changes in adult patients with primary dengue infection. PLoS Negl. Trop. Dis. 7, e2373. https://doi.org/10.1371/journal.pntd.0002373 (2013).
doi: 10.1371/journal.pntd.0002373 pubmed: 23967362 pmcid: 3744433
Satapati, S. et al. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J. Lipid. Res. 53, 1080–1092. https://doi.org/10.1194/jlr.M023382 (2012).
doi: 10.1194/jlr.M023382 pubmed: 22493093 pmcid: 3351815
Minokoshi, Y. et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–343. https://doi.org/10.1038/415339a (2002).
doi: 10.1038/415339a pubmed: 11797013
Li, M. et al. GC/TOFMS analysis of metabolites in serum and urine reveals metabolic perturbation of TCA cycle in db/db mice involved in diabetic nephropathy. Am. J. Physiol. Renal. Physiol. 304, F1317-1324. https://doi.org/10.1152/ajprenal.00536.2012 (2013).
doi: 10.1152/ajprenal.00536.2012 pubmed: 23467425
Nagao, T. et al. Prognostic factors in influenza-associated encephalopathy. Pediatr. Infect. Dis. J. 27, 384–389. https://doi.org/10.1097/INF.0b013e318162a13b (2008).
doi: 10.1097/INF.0b013e318162a13b pubmed: 18398388
Smallwood, H. S. et al. Targeting metabolic reprogramming by influenza infection for therapeutic intervention. Cell Rep. 19, 1640–1653. https://doi.org/10.1016/j.celrep.2017.04.039 (2017).
doi: 10.1016/j.celrep.2017.04.039 pubmed: 28538182 pmcid: 5599215
Ritter, J. B., Wahl, A. S., Freund, S., Genzel, Y. & Reichl, U. Metabolic effects of influenza virus infection in cultured animal cells: Intra- and extracellular metabolite profiling. BMC Syst. Biol. 4, 61. https://doi.org/10.1186/1752-0509-4-61 (2010).
doi: 10.1186/1752-0509-4-61 pubmed: 20465796 pmcid: 2890500
Fislová, T. et al. Multiorgan distribution of human influenza A virus strains observed in a mouse model. Arch. Virol. 154, 409–419. https://doi.org/10.1007/s00705-009-0318-8 (2009).
doi: 10.1007/s00705-009-0318-8 pubmed: 19189197
Senn, J. J., Klover, P. J., Nowak, I. A. & Mooney, R. A. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51, 3391–3399. https://doi.org/10.2337/diabetes.51.12.3391 (2002).
doi: 10.2337/diabetes.51.12.3391 pubmed: 12453891
Klover, P. J., Zimmers, T. A., Koniaris, L. G. & Mooney, R. A. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52, 2784–2789. https://doi.org/10.2337/diabetes.52.11.2784 (2003).
doi: 10.2337/diabetes.52.11.2784 pubmed: 14578297
Šestan, M. et al. Virus-induced interferon-γ causes insulin resistance in skeletal muscle and derails glycemic control in obesity. Immunity 49, 164-177.e166. https://doi.org/10.1016/j.immuni.2018.05.005 (2018).
doi: 10.1016/j.immuni.2018.05.005 pubmed: 29958802
Lee, J. M. et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516, 112–115. https://doi.org/10.1038/nature13961 (2014).
doi: 10.1038/nature13961 pubmed: 25383539 pmcid: 4267857
Brocker, C. N. et al. Extrahepatic PPARα modulates fatty acid oxidation and attenuates fasting-induced hepatosteatosis in mice. J. Lipid Res. 59, 2140–2152. https://doi.org/10.1194/jlr.M088419 (2018).
doi: 10.1194/jlr.M088419 pubmed: 30158201 pmcid: 6210912
Jun, D. W. et al. Prevention of free fatty acid-induced hepatic lipotoxicity by carnitine via reversal of mitochondrial dysfunction. Liver Int. 31, 1315–1324. https://doi.org/10.1111/j.1478-3231.2011.02602.x (2011).
doi: 10.1111/j.1478-3231.2011.02602.x pubmed: 22093454
Glass, C. K. & Olefsky, J. M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 15, 635–645. https://doi.org/10.1016/j.cmet.2012.04.001 (2012).
doi: 10.1016/j.cmet.2012.04.001 pubmed: 22560216 pmcid: 4156155
Nedel, W. L., Nora, D. G., Salluh, J. I., Lisboa, T. & Póvoa, P. Corticosteroids for severe influenza pneumonia: a critical appraisal. World J. Crit. Care Med. 5, 89–95. https://doi.org/10.5492/wjccm.v5.i1.89 (2016).
doi: 10.5492/wjccm.v5.i1.89 pubmed: 26855898 pmcid: 4733461
Weinstein, S. P., Paquin, T., Pritsker, A. & Haber, R. S. Glucocorticoid-induced insulin resistance: dexamethasone inhibits the activation of glucose transport in rat skeletal muscle by both insulin- and non-insulin-related stimuli. Diabetes 44, 441–445. https://doi.org/10.2337/diab.44.4.441 (1995).
doi: 10.2337/diab.44.4.441 pubmed: 7698514
Lauder, S. N. et al. Interleukin-6 limits influenza-induced inflammation and protects against fatal lung pathology. Eur. J. Immunol. 43, 2613–2625. https://doi.org/10.1002/eji.201243018 (2013).
doi: 10.1002/eji.201243018 pubmed: 23857287
Ma, J., Dushoff, J. & Earn, D. J. Age-specific mortality risk from pandemic influenza. J. Theor. Biol. 288, 29–34. https://doi.org/10.1016/j.jtbi.2011.08.003 (2011).
doi: 10.1016/j.jtbi.2011.08.003 pubmed: 21856313
Oshansky, C. M. et al. Mucosal immune responses predict clinical outcomes during influenza infection independently of age and viral load. Am. J. Respir. Crit. Care Med. 189, 449–462. https://doi.org/10.1164/rccm.201309-1616OC (2014).
doi: 10.1164/rccm.201309-1616OC pubmed: 24308446 pmcid: 3977720
Takano, T., Tajiri, H., Kashiwagi, Y., Kimura, S. & Kawashima, H. Cytokine and chemokine response in children with the 2009 pandemic influenza A (H1N1) virus infection. Eur. J. Clin. Microbiol. Infect. Dis. 30, 117–120. https://doi.org/10.1007/s10096-010-1041-9 (2011).
doi: 10.1007/s10096-010-1041-9 pubmed: 20820834
Choleau, C. et al. Ketoacidosis at diagnosis of type 1 diabetes in French children and adolescents. Diabetes Metab. 40, 137–142. https://doi.org/10.1016/j.diabet.2013.11.001 (2014).
doi: 10.1016/j.diabet.2013.11.001 pubmed: 24332018

Auteurs

Marumi Ohno (M)

Research Center for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, 001-0020, Japan.

Toshiki Sekiya (T)

Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.

Naoki Nomura (N)

Research Center for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, 001-0020, Japan.

Taku Ji Daito (TJ)

Research Center for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, 001-0020, Japan.

Masashi Shingai (M)

Research Center for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, 001-0020, Japan.

Hiroshi Kida (H)

Research Center for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, 001-0020, Japan. kida@vetmed.hokudai.ac.jp.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH