An Ultraviolet Thermally Activated Delayed Fluorescence OLED with Total External Quantum Efficiency over 9.

organic light-emitting diodes thermally activated delayed fluorescence

Journal

Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358

Informations de publication

Date de publication:
Aug 2020
Historique:
received: 22 02 2020
revised: 22 05 2020
pubmed: 4 7 2020
medline: 4 7 2020
entrez: 4 7 2020
Statut: ppublish

Résumé

Owing to the difficulty in acquiring compounds with combined high energy bandgaps and lower-lying intramolecular charge-transfer excited states, the development of ultraviolet (UV) thermally activated delayed fluorescence (TADF) materials is quite challenging. Herein, through interlocking of the diphenylsulfone (PS) acceptor unit of a reported deep-blue TADF emitter (CZ-PS) by a dimethylmethylene bridge, CZ-MPS, a UV-emissive TADF compound bearing a shallower LUMO energy level and a more rigid structure than those of CZ-PS is achieved. This represents the first example of a UV-emissive TADF compound. Organic light-emitting diode (OLED) using CZ-MPS as the guest material can emit efficient UV light with emission maximum of 389 nm and maximum total external quantum efficiency (EQE

Identifiants

pubmed: 32618079
doi: 10.1002/adma.202001248
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2001248

Subventions

Organisme : National Natural Science Foundation of China
ID : 21672156
Organisme : National Natural Science Foundation of China
ID : 21772172
Organisme : National Natural Science Foundation of China
ID : 21875148
Organisme : National Natural Science Foundation of China
ID : 21773297
Organisme : National Natural Science Foundation of China
ID : 21973108
Organisme : National Natural Science Foundation of China
ID : U1730127
Organisme : National Key Program of Research and Development
ID : 2018YFB0703900

Informations de copyright

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

a) M. Berggren, M. Granström, O. Inganäs, M. Andersson, Adv. Mater. 1995, 7, 900;
b) T.-C. Chao, Y.-T. Lin, C.-Y. Yang, T. S. Hung, H.-C. Chou, C.-C. Wu, K.-T. Wong, Adv. Mater. 2005, 17, 992.
J. Shinar, R. Shinar, J. Phys. D: Appl. Phys. 2008, 41, 133001.
H. van Santen, J. H. M. Neijzen, Jpn. J. Appl. Phys. 2003, 42, 1110.
S.-J. Yeh, M.-F. Wu, C.-T. Chen, Y.-H. Song, Y. Chi, M.-H. Ho, S.-F. Hsu, C. H. Chen, Adv. Mater. 2005, 17, 285.
X. Zhang, F. You, S. Liu, B. Mo, Z. Zhang, J. Xiong, P. Cai, X. Xue, J. Zhang, B. Wei, Appl. Phys. Lett. 2017, 110, 043301.
a) Q. Zheng, F. You, J. Xu, J. Xiong, X. Xue, P. Cai, X. Zhang, H. Wang, B. Wei, L. Wang, Org. Electron. 2017, 46, 7;
b) X. Zhang, W. Li, Z. Ling, Y. Zhang, J. Xu, H. Wang, G. Chen, B. Wei, J. Mater. Chem. C 2019, 7, 926;
c) K.-T. Wong, Y.-L. Liao, Y.-T. Lin, H.-C. Su, C.-C. Wu, Org. Lett. 2005, 7, 5131;
d) H. Zhang, B. Yang, Y. Zheng, G. Yang, L. Ye, Y. Ma, X. Chen, G. Cheng, S. Liu, J. Phys. Chem. B 2004, 108, 9571;
e) Y. Yang, P. Cohn, S.-H. Eom, K. A. Abboud, R. K. Castellano, J. Xue, J. Mater. Chem. C 2013, 1, 2867.
a) M. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444;
b) T. J. Penfold, F. B. Dias, A. P. Monkman, Chem. Commun. 2018, 54, 3926;
c) K. Wu, T. Zhang, Z. Wang, L. Wang, L. Zhan, S. Gong, C. Zhong, Z.-H. Lu, S. Zhang, C. Yang, J. Am. Chem. Soc. 2018, 140, 8877;
d) J. Yang, Q. Guo, J. Wang, Z. Ren, J. Chen, Q. Peng, D. Ma, Z. Li, Adv. Opt. Mater. 2018, 6, 1800342;
e) W. Li, X. Cai, B. Li, L. Gan, Y. He, K. Liu, D. Chen, Y. C. Wu, S. J. Su, Angew. Chem., Int. Ed. 2019, 58, 582;
f) Y. Zhang, D. Zhang, J. Wei, Z. Liu, Y. Lu, L. Duan, Angew. Chem., Int. Ed. 2019, 58, 16912.
a) Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C. Adachi, J. Am. Chem. Soc. 2012, 134, 14706;
b) D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, J. H. Kwon, Nat. Photonics 2019, 13, 540;
c) L. S. Cui, H. Nomura, Y. Geng, J. U. Kim, H. Nakanotani, C. Adachi, Angew. Chem., Int. Ed. 2017, 56, 1571;
d) Y. L. Zhang, Q. Ran, Q. Wang, Y. Liu, C. Hanisch, S. Reineke, J. Fan, L. S. Liao, Adv. Mater. 2019, 31, 1902368;
e) J. Xue, Q. Liang, R. Wang, J. Hou, W. Li, Q. Peng, Z. Shuai, J. Qiao, Adv. Mater. 2019, 31, 1808242;
f) J. X. Chen, W. W. Tao, W. C. Chen, Y. F. Xiao, K. Wang, C. Cao, J. Yu, S. Li, F. X. Geng, C. Adachi, C. S. Lee, X. H. Zhang, Angew. Chem., Int. Ed. 2019, 58, 14660;
g) W. Zeng, T. Zhou, W. Ning, C. Zhong, J. He, S. Gong, G. Xie, C. Yang, Adv. Mater. 2019, 31, 1901404.
S. Xue, X. Qiu, S. Ying, Y. Lu, Y. Pan, Q. Sun, C. Gu, W. Yang, Adv. Opt. Mater. 2017, 5, 1700747.
D. Zhang, H. Wei, Y. Wang, G. Dai, X. Zhao, Dyes Pigm. 2020, 174, 108028.
C. Fu, S. Luo, Z. Li, X. Ai, Z. Pang, C. Li, K. Chen, L. Zhou, F. Li, Y. Huang, Z. Lu, Chem. Commun. 2019, 55, 6317.
P. L. Santos, J. S. Ward, P. Data, A. S. Batsanov, M. R. Bryce, F. B. Dias, A. P. Monkman, J. Mater. Chem. C 2016, 4, 3815.
a) L. Gan, X. Li, X. Cai, K. Liu, W. Li, S.-J. Su, Beilstein J. Org. Chem. 2018, 14, 672;
b) S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H. Miyazaki, C. Adachi, Nat. Mater. 2015, 14, 330.
S. Huang, Q. Zhang, Y. Shiota, T. Nakagawa, K. Kuwabara, K. Yoshizawa, C. Adachi, J. Chem. Theory Comput. 2013, 9, 3872.
a) P. K. Samanta, D. Kim, V. Coropceanu, J. L. Bredas, J. Am. Chem. Soc. 2017, 139, 4042;
b) H. Sun, C. Zhong, J. L. Bredas, J. Chem. Theory Comput. 2015, 11, 3851.
a) T. Hu, G. Han, Z. Tu, R. Duan, Y. Yi, J. Phys. Chem. C 2018, 122, 27191;
b) L. Zhan, Z. Chen, S. Gong, Y. Xiang, F. Ni, X. Zeng, G. Xie, C. Yang, Angew. Chem., Int. Ed. 2019, 58, 17651;
c) Z. Chen, F. Ni, Z. Wu, Y. Hou, C. Zhong, M. Huang, G. Xie, D. Ma, C. Yang, J. Phys. Chem. Lett. 2019, 10, 2669.

Auteurs

Yanju Luo (Y)

Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.

Shuaibing Li (S)

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

Yihuan Zhao (Y)

Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.

Chuan Li (C)

Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.

Zhenguo Pang (Z)

Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.

Yan Huang (Y)

Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.

Minghui Yang (M)

Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China.

Liang Zhou (L)

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

Xujun Zheng (X)

Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.

Xuemei Pu (X)

Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.

Zhiyun Lu (Z)

Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.

Classifications MeSH