Effects of dietary phytol on tissue accumulation of phytanic acid and pristanic acid and on the tissue lipid profiles in mice.
Adipose Tissue
/ metabolism
Animals
Brain
/ metabolism
Diet
Fatty Acids
/ metabolism
Fatty Acids, Unsaturated
/ metabolism
Female
Linoleic Acid
/ metabolism
Lipid Metabolism
/ drug effects
Liver
/ metabolism
Mice, Inbred C57BL
Phytanic Acid
/ metabolism
Phytol
/ administration & dosage
Tissue Distribution
mouse
phytanic acid
phytol
pristanic acid
tissue lipid profile
Journal
Animal science journal = Nihon chikusan Gakkaiho
ISSN: 1740-0929
Titre abrégé: Anim Sci J
Pays: Australia
ID NLM: 100956805
Informations de publication
Date de publication:
Historique:
received:
05
04
2020
revised:
07
06
2020
accepted:
10
06
2020
entrez:
4
7
2020
pubmed:
4
7
2020
medline:
31
10
2020
Statut:
ppublish
Résumé
Recent in vitro evidence suggests that the phytol-derived fatty acids, phytanic acid (PA) and pristanic acid (PrA), are components of animal products with the potential to cause both beneficial and harmful effects on human health. In this study, we investigated the in vivo tissue accumulation of PA and PrA and the changes in tissue lipid profiles, using mice fed a phytol-containing diet. After 4 weeks of treatment with a diet containing 1.0% phytol, plasma, adipose tissue, liver, and brain were collected and their lipid profiles were biochemically and gas-chromatographically determined. Dietary phytol caused PA and PrA accumulation in the adipose tissue and liver but not in the brain, and reduced plasma and liver triacylglycerol levels. Phytol intake also decreased the fatty acid concentrations in the adipose tissue, especially polyunsaturated fatty acids such as linoleic acid, but increased the concentrations of these fatty acids in the liver. However, dietary phytol had a low impact on the brain lipid profile. This study suggests that dietary phytol intake caused accumulation of PA and PrA and modified lipid profiles in the adipose tissue and liver, but that the brain is an insusceptible tissue to dietary phytol-induced changes.
Substances chimiques
Fatty Acids
0
Fatty Acids, Unsaturated
0
Phytanic Acid
14721-66-5
Phytol
150-86-7
pristanic acid
5FMQ2908AP
Linoleic Acid
9KJL21T0QJ
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13424Subventions
Organisme : Japan Society for the Promotion of Science
ID : 17K15364
Pays : International
Organisme : Japan Society for the Promotion of Science
ID : 19K06356
Pays : International
Informations de copyright
© 2020 Japanese Society of Animal Science.
Références
Agheli, N., & Jacotot, B. (1991). Effect of simvastatin and fenofibrate on the fatty acid composition of hypercholesterolaemic patients. British Journal of Clinical Pharmacology, 32, 423-428. https://doi.org/10.1111/j.1365-2125.1991.tb03925.x
Alasnier, C., Berdeaux, O., Chardigny, J. M., & Sébédio, J. L. (2002). Fatty acid composition and conjugated linoleic acid content of different tissues in rats fed individual conjugated linoleic acid isomers given as triacylglycerols. The Journal of Nutritional Biochemistry, 13, 337-345. https://doi.org/10.1016/S0955-2863(02)00176-6
Allen, N. E., Grace, P. B., Ginn, A., Travis, R. C., Roddam, A. W., Appleby, P. N., & Key, T. (2008). Phytanic acid: Measurement of plasma concentrations by gas-liquid chromatography-mass spectrometry analysis and associations with diet and other plasma fatty acids. British Journal of Nutrition, 99, 653-659. https://doi.org/10.1017/S000711450782407X
An, J.-Y., Jheng, H.-F., Nagai, H., Sanada, K., Takahashi, H., Iwase, M., … Goto, T. (2018). A phytol-enriched diet activates PPAR-α in the liver and brown adipose tissue to ameliorate obesity-induced metabolic abnormalities. Molecular Nutrition & Food Research, 62, e1700688. https://doi.org/10.1002/mnfr.201700688
Atshaves, B. P., McIntosh, A. L., Landrock, D., Payne, H. R., Mackie, J. T., Maeda, N., … Kier, A. B. (2007). Effect of SCP-x gene ablation on branched-chain fatty acid metabolism. American Journal of Physiology: Gastrointestinal and Liver Physiology, 292, G939-G951. https://doi.org/10.1152/ajpgi.00308.2006
Brown, P. J., Mei, G., Gibberd, F. B., Burston, D., Mayne, P. D., McClinchy, J. E., & Sidey, M. (1993). Diet and Refsum's disease. The determination of phytanic acid and phytol in certain foods and the application of this knowledge to the choice of suitable convenience foods for patients with Refsum's disease. Journal of Human Nutrition and Dietetics, 6, 295-305.
Che, B. N., Oksbjerg, N., Hellgren, L. I., Nielsen, J. H., & Young, J. F. (2013). Phytanic acid stimulates glucose uptake in a model of skeletal muscles, the primary porcine myotubes. Lipids in Health and Disease, 12, 14. https://doi.org/10.1186/1476-511X-12-14
Chen, L., Takatani, N., Beppu, F., Miyashita, K., & Hosokawa, M. (2019). The effect of n-3 PUFA binding phosphatidylglycerol on metabolic syndrome-related parameters and n-3 PUFA accretion in diabetic/obese KK-Ay mice. Nutrients, 11, 2866. https://doi.org/10.3390/nu11122866
Choi, J. M., & Bothwell, A. L. (2012). The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Molecules and Cells, 33, 217-222. https://doi.org/10.1007/s10059-012-2297-y
Ferdinandusse, S., Denis, S., Clayton, P. T., Graham, A., Rees, J. E., Allen, J. T., … Wanders, R. J. (2000). Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nature Genetics, 24, 188-191. https://doi.org/10.1038/72861
Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226, 497-509.
Heim, M., Johnson, J., Boess, F., Bendik, I., Weber, P., Hunziker, W., & Fluhmann, B. (2002). Phytanic acid, a natural peroxisome proliferator-activated receptor (PPAR) agonist, regulates glucose metabolism in rat primary hepatocytes. FASEB Journal, 16, 718-720. https://doi.org/10.1096/fj.01-0816fje
Hellgren, L. I. (2010). Phytanic acid-an overlooked bioactive fatty acid in dairy fat? Annals of the New York Academy of Sciences, 1190, 42-49. https://doi.org/10.1111/j.1749-6632.2009.05254.x
Janani, C., & Ranjitha Kumari, B. D. (2015). PPAR gamma gene-A review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 9, 46-50. https://doi.org/10.1016/j.dsx.2014.09.015
Kawahara, S., Takenoyama, S. I., Takuma, K., Muguruma, M., & Yamauchi, K. (2009). Effects of dietary supplementation with conjugated linoleic acid on fatty acid composition and lipid oxidation in chicken breast meat. Animal Science Journal, 80, 468-474. https://doi.org/10.1111/j.1740-0929.2009.00658.x
Krauß, S., Michaelis, L., & Vetter, W. (2017). Phytyl fatty acid esters in vegetables pose a risk for patients suffering from Refsum’s disease. PLoS One, 12, e0188035. https://doi.org/10.1371/journal.pone.0188035
Liu, Y., & Longmore, R. B. (1997). Dietary sandalwood seed oil modifies fatty acid composition of mouse adipose tissue, brain, and liver. Lipids, 32, 965-969. https://doi.org/10.1007/s11745-997-0125-x
Milligan, S., Martin, G. G., Landrock, D., McIntosh, A. L., Mackie, J. T., Schroeder, F., & Kier, A. B. (2017). Impact of dietary phytol on lipid metabolism in SCP2/SCPX/L-FABP null mice. Biochimica Et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1862, 291-304. https://doi.org/10.1016/j.bbalip.2016.12.002
Mize, C. E., Avigan, J., Baxter, J. H., Fales, H. M., & Steinberg, D. (1966). Metabolism of phytol-U-14C and phytanic acid-U-14C in the rat. Journal of Lipid Research, 7, 692-697.
Nakajima, T., Tanaka, N., Kanbe, H., Hara, A., Kamijo, Y., Zhang, X., … Aoyama, T. (2009). Bezafibrate at clinically relevant doses decreases serum/liver triglycerides via down-regulation of sterol regulatory element-binding protein-1c in mice: A novel peroxisome proliferator-activated receptor alpha-independent mechanism. Molecular Pharmacology, 75, 782-792. https://doi.org/10.1124/mol.108.052928
Nakanishi, T., Anraku, M., Suzuki, R., Kono, T., Erickson, L., & Kawahara, S. (2016). Novel immunomodulatory effects of phytanic acid and its related substances in mice. Journal of Functional Foods, 21, 283-289. https://doi.org/10.1016/j.jff.2015.12.028
Nakanishi, T., Motoba, I., Anraku, M., Suzuki, R., Yamaguchi, Y., Erickson, L., … Kawahara, S. (2018). Naturally occurring 3RS, 7R, 11R-phytanic acid suppresses in vitro T-cell production of interferon-gamma. Lipids in Health and Disease, 17, 147. https://doi.org/10.1186/s12944-018-0793-6
Ohba, T., Holt, J. A., Billheimer, J. T., & Strauss, J. F. (1995). Human sterol carrier protein x/sterol carrier protein 2 gene has two promoters. Biochemistry, 34, 10660-10668. https://doi.org/10.1021/bi00033a042
Patton, S., & Benson, A. A. (1966). Phytol metabolism in the bovine. Biochimica Et Biophysica Acta, 125, 22-32. https://doi.org/10.1016/0005-2760(66)90140-8
Roca-Saavedra, P., Mariño-Lorenzo, P., Miranda, J. M., Porto-Arias, J. J., Lamas, A., Vazquez, B. I., … Cepeda, A. (2017). Phytanic acid consumption and human health, risks, benefits and future trends: A review. Food Chemistry, 221, 237-247. https://doi.org/10.1016/j.foodchem.2016.10.074
Roff, C. F., Pastuszyn, A., Strauss, J. F., Billheimer, J. T., Vanier, M. T., Brady, R. O., … Pentchev, P. G. (1992). Deficiencies in sex-regulated expression and levels of two hepatic sterol carrier proteins in a murine model of Niemann-Pick type C disease. Journal of Biological Chemistry, 267, 15902-15908.
Schlüter, A., Yubero, P., Iglesias, R., Giralt, M., & Villarroya, F. (2002). The chlorophyll-derived metabolite phytanic acid induces white adipocyte differentiation. International Journal of Obesity and Related Metabolic Disorders, 26, 1277-1280. https://doi.org/10.1038/sj.ijo.0802068
Schröder, M., Lehnert, K., Hammann, S., & Vetter, W. (2014). Dihydrophytol and phytol isomers as marker substances for hydrogenated and refined vegetable oils. European Journal of Lipid Science and Technology, 116, 1372-1380. https://doi.org/10.1002/ejlt.201400095
Srivastava, R. A. (2009). Fenofibrate ameliorates diabetic and dyslipidemic profiles in KKAy mice partly via down-regulation of 11beta-HSD1, PEPCK and DGAT2. Comparison of PPARalpha, PPARgamma, and liver x receptor agonists. European Journal of Pharmacology, 607, 258-263. https://doi.org/10.1016/j.ejphar.2009.02.024
Steinberg, D., Avigan, J., Mize, C. E., Baxter, J. H., Cammermeyer, J., Fales, H. M., & Highet, P. F. (1966). Effects of dietary phytol and phytanic acid in animals. Journal of Lipid Research, 7, 684-691.
van den Brink, D. M., & Wanders, R. J. (2006). Phytanic acid: Production from phytol, its breakdown and role in human disease. Cellular and Molecular Life Sciences, 63, 1752-1765. https://doi.org/10.1007/s00018-005-5463-y
Van Veldhoven, P. P., Mannaerts, G. P., Casteels, M., & Croes, K. (1999). Hepatic alpha-oxidation of phytanic acid. A revised pathway. Advances in Experimental Medicine and Biology, 466, 273-281. https://doi.org/10.1007/0-306-46818-2_32
Vetter, W., & Schröder, M. (2010). Concentrations of phytanic acid and pristanic acid are higher in organic than in conventional dairy products from the German market. Food Chemistry, 119, 746-752. https://doi.org/10.1016/j.foodchem.2009.07.027
Wang, J., Hu, X., Ai, W., Zhang, F., Yang, K., Wang, L., … Wang, S. (2017). Phytol increases adipocyte number and glucose tolerance through activation of PI3K/Akt signaling pathway in mice fed high-fat and high-fructose diet. Biochemical and Biophysical Research Communications, 489, 432-438. https://doi.org/10.1016/j.bbrc.2017.05.160
Zomer, A. W., van Der Burg, B., Jansen, G. A., Wanders, R. J., Poll-The, B. T., & van Der Saag, P. T. (2000). Pristanic acid and phytanic acid: Naturally occurring ligands for the nuclear receptor peroxisome proliferator-activated receptor alpha. Journal of Lipid Research, 41, 1801-1807.