Oculomotor freezing reflects tactile temporal expectation and aids tactile perception.
Adult
Cues
Eye Movements
/ physiology
Female
Humans
Male
Oculomotor Muscles
/ innervation
Photic Stimulation
Psychomotor Performance
/ physiology
Reaction Time
/ physiology
Saccades
/ physiology
Time Perception
/ physiology
Touch
/ physiology
Touch Perception
/ physiology
Visual Perception
/ physiology
Young Adult
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
03 07 2020
03 07 2020
Historique:
received:
26
02
2020
accepted:
08
06
2020
entrez:
5
7
2020
pubmed:
6
7
2020
medline:
1
9
2020
Statut:
epublish
Résumé
The oculomotor system keeps the eyes steady in expectation of visual events. Here, recording microsaccades while people performed a tactile, frequency discrimination task enabled us to test whether the oculomotor system shows an analogous preparatory response for unrelated tactile events. We manipulated the temporal predictability of tactile targets using tactile cues, which preceded the target by either constant (high predictability) or variable (low predictability) time intervals. We find that microsaccades are inhibited prior to tactile targets and more so for constant than variable intervals, revealing a tight crossmodal link between tactile temporal expectation and oculomotor action. These findings portray oculomotor freezing as a marker of crossmodal temporal expectation. Moreover, microsaccades occurring around the tactile target presentation are associated with reduced task performance, suggesting that oculomotor freezing mitigates potential detrimental, concomitant effects of microsaccades and revealing a crossmodal coupling between tactile perception and oculomotor action.
Identifiants
pubmed: 32620746
doi: 10.1038/s41467-020-17160-1
pii: 10.1038/s41467-020-17160-1
pmc: PMC7335189
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3341Subventions
Organisme : NEI NIH HHS
ID : R01 EY019693
Pays : United States
Organisme : NEI NIH HHS
ID : R21 EY026185
Pays : United States
Références
Nobre, A. C. & van Ede, F. Anticipated moments: temporal structure in attention. Nat. Rev. Neurosci. 19, 34–48 (2018).
pubmed: 29213134
Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. Trends Cognit. Sci. 13, 403–409 (2009).
Engbert, R. Microsaccades: a microcosm for research on oculomotor control, attention, and visual perception. Prog. Brain Res. 154, 177–192 (2006).
pubmed: 17010710
Rolfs, M. Microsaccades: small steps on a long way. Vis. Res. 49, 2415–2441 (2009).
pubmed: 19683016
Martinez-Conde, S., Macknik, S. L., Troncoso, X. G. & Hubel, D. H. Microsaccades: a neurophysiological analysis. Trends Neurosci. 32, 463–475 (2009).
pubmed: 19716186
Martinez-Conde, S., Otero-Millan, J. & Macknik, S. L. The impact of microsaccades on vision: towards a unified theory of saccadic function. Nat. Rev. Neurosci. 14, 83–96 (2013).
pubmed: 23329159
Rucci, M. & Poletti, M. Control and functions of fixational eye movements. Annu. Rev. Vis. Sci. 1, 499–518 (2015).
pubmed: 27795997
pmcid: 5082990
Dankner, Y., Shalev, L., Carrasco, M. & Yuval-Greenberg, S. Prestimulus inhibition of saccades in adults with and without attention-deficit/hyperactivity disorder as an index of temporal expectations. Psychol. Sci. 28, 835–850 (2017).
pubmed: 28520552
Amit, R., Abeles, D., Carrasco, M. & Yuval-Greenberg, S. Oculomotor inhibition reflects temporal expectations. Neuroimage 184, 279–292 (2019).
pubmed: 30223059
Abeles, D., Amit, R., Tal-Perry, N., Carrasco, M. & Yuval-Greenberg, S. Oculomotor inhibition precedes temporally expected auditory targets. Nat. Commun. (in press).
Badde, S., Navarro, K. T. & Landy, M. S. Modality-specific attention attenuates visual-tactile integration and recalibration effects by reducing prior expectations of a common source for vision and touch. Cognition 197, 104170 (2020).
pubmed: 32036027
pmcid: 7182122
Vetter, P., Badde, S., Phelps, E. A. & Carrasco, M. Emotional faces guide the eyes in the absence of awareness. Elife 8, e43467 (2019).
pubmed: 30735123
pmcid: 6382349
Spering, M. & Carrasco, M. Acting without seeing: eye movements reveal visual processing without awareness. Trends Neurosci. 38, 247–258 (2015).
pubmed: 25765322
pmcid: 4385403
Spering, M. & Carrasco, M. Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness. J. Neurosci. 32, 7594–7601 (2012).
pubmed: 22649238
pmcid: 3378319
Simoncini, C., Perrinet, L. U., Montagnini, A., Mamassian, P. & Masson, G. S. More is not always better: adaptive gain control explains dissociation between perception and action. Nat. Neurosci. 15, 1596–1603 (2012).
pubmed: 23023292
Spering, M., Pomplun, M. & Carrasco, M. Tracking without perceiving: a dissociation between eye movements and motion perception. Psychol. Sci. 22, 216–225 (2011).
pubmed: 21189353
Morrone, M. C., Ross, J. & Burr, D. Saccadic eye movements cause compression of time as well as space. Nat. Neurosci. 8, 950–954 (2005).
pubmed: 15965472
Binda, P. & Morrone, M. C. Vision during saccadic eye movements. Annu. Rev. Vis. Sci. 4, 193–213 (2018).
pubmed: 30222534
Zuber, B. L. & Stark, L. Saccadic suppression: elevation of visual threshold associated with saccadic eye movements. Exp. Neurol. 16, 65–79 (1966).
pubmed: 5923485
Yu, G., Yang, M., Yu, P. & Dorris, M. C. Time compression of visual perception around microsaccades. J. Neurophysiol. 118, 416–424 (2017).
pubmed: 28298299
pmcid: 5506265
Hafed, Z. M. & Krauzlis, R. J. Microsaccadic suppression of visual bursts in the primate superior colliculus. J. Neurosci. 30, 9542–9547 (2010).
pubmed: 20631182
pmcid: 2922969
Herrington, T. M. et al. The effect of microsaccades on the correlation between neural activity and behavior in middle temporal, ventral intraparietal, and lateral intraparietal areas. J. Neurosci. 29, 5793–5805 (2009).
pubmed: 19420247
pmcid: 2904875
Meredith, M. A. & Stein, B. E. Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J. Neurophysiol. 56, 640–662 (1986).
pubmed: 3537225
Ghazanfar, A. A. & Schroeder, C. E. Is neocortex essentially multisensory? Trends Cogn. Sci. 10, 278–285 (2006).
pubmed: 16713325
Stein, B. E. & Stanford, T. R. Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266 (2008).
pubmed: 18354398
Fetsch, C. R., DeAngelis, G. C. & Angelaki, D. E. Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat. Rev. Neurosci. 14, 429–442 (2013).
pubmed: 23686172
Denison, R. N., Yuval-Greenberg, S. & Carrasco, M. Directing voluntary temporal attention increases fixational stability. J. Neurosci. 39, 353–363 (2019).
pubmed: 30459223
pmcid: 6325259
Pomper, U., Keil, J., Foxe, J. J. & Senkowski, D. Intersensory selective attention and temporal orienting operate in parallel and are instantiated in spatially distinct sensory and motor cortices. Hum. Brain Mapp. 36, 3246–3259 (2015).
pubmed: 26032901
pmcid: 6869659
Denison, R. N., Heeger, D. J. & Carrasco, M. Attention flexibly trades off across points in time. Psychon. Bull. Rev. 24, 1142–1151 (2017).
pubmed: 28054311
pmcid: 5496802
Fernandez, A., Denison, R. N. & Carrasco, M. Temporal attention improves perception similarly at foveal and parafoveal locations. J. Vis. 19, 12 (2019).
pubmed: 30650437
pmcid: 6336355
Wyart, V., Nobre, A. C. & Summerfield, C. Dissociable prior influences of signal probability and relevance on visual contrast sensitivity. Proc. Natl Acad. Sci. USA 109, 3593–3598 (2012).
pubmed: 22331901
Rungratsameetaweemana, N. & Serences, J. T. Dissociating the impact of attention and expectation on early sensory processing. Curr. Opin. Psychol. 29, 181–186 (2019).
pubmed: 31022561
Kok, P., Rahnev, D., Jehee, J. F., Lau, H. C. & de Lange, F. P. Attention reverses the effect of prediction in silencing sensory signals. Cereb. Cortex 22, 2197–2206 (2012).
pubmed: 22047964
Keil, J., Pomper, U., Feuerbach, N. & Senkowski, D. Temporal orienting precedes intersensory attention and has opposing effects on early evoked brain activity. Neuroimage 148, 230–239 (2017).
pubmed: 28108395
Lange, K. & Röder, B. Orienting attention to points in time improves stimulus processing both within and across modalities. J. Cogn. Neurosci. 18, 715–729 (2006).
pubmed: 16768372
Mühlberg, S. & Soto-Faraco, S. Cross-modal decoupling in temporal attention between audition and touch. Psychol. Res. 83, 1626–1639 (2019).
pubmed: 29774432
Engbert, R. & Kliegl, R. Microsaccades uncover the orientation of covert attention. Vis. Res. 43, 1035–1045 (2003).
pubmed: 12676246
Pastukhov, A. & Braun, J. Rare but precious: microsaccades are highly informative about attentional allocation. Vis. Res. 50, 1173–1184 (2010).
pubmed: 20382176
Yuval-Greenberg, S., Merriam, E. P. & Heeger, D. J. Spontaneous microsaccades reflect shifts in covert attention. J. Neurosci. 34, 13693–13700 (2014).
pubmed: 25297096
pmcid: 4188967
Rolfs, M., Engbert, R. & Kliegl, R. Crossmodal coupling of oculomotor control and spatial attention in vision and audition. Exp. Brain Res. 166, 427–439 (2005).
pubmed: 16032403
Turatto, M., Valsecchi, M., Tame, L. & Betta, E. Microsaccades distinguish between global and local visual processing. Neuroreport 18, 1015–1018 (2007).
pubmed: 17558287
Dalmaso, M., Castelli, L., Scatturin, P. & Galfano, G. Working memory load modulates microsaccadic rate. J. Vis. 17, 6 (2017).
pubmed: 28278311
Hicheur, H., Zozor, S., Campagne, A. & Chauvin, A. Microsaccades are modulated by both attentional demands of a visual discrimination task and background noise. J. Vis. 13, 18 (2013).
pubmed: 24246468
Siegenthaler, E. et al. Task difficulty in mental arithmetic affects microsaccadic rates and magnitudes. Eur. J. Neurosci. 39, 287–294 (2014).
pubmed: 24438491
Gao, X., Yan, H. & Sun, H. J. Modulation of microsaccade rate by task difficulty revealed through between- and within-trial comparisons. J. Vis. 15, 1–15 (2015).
Rolfs, M., Kliegl, R. & Engbert, R. Toward a model of microsaccade generation: the case of microsaccadic inhibition. J. Vis. 8, 1–23 (2008).
pubmed: 18831599
White, A. L. & Rolfs, M. Oculomotor inhibition covaries with conscious detection. J. Neurophysiol. 116, 1507–1521 (2016).
pubmed: 27385794
pmcid: 5040379
Scholes, C., McGraw, P. V., Nystrom, M. & Roach, N. W. Fixational eye movements predict visual sensitivity. Proc. Biol. Sci. 282, 20151568 (2015).
pubmed: 26468244
pmcid: 4633872
Valsecchi, M., Betta, E. & Turatto, M. Visual oddballs induce prolonged microsaccadic inhibition. Exp. Brain Res. 177, 196–208 (2007).
pubmed: 16951959
Valsecchi, M. & Turatto, M. Microsaccadic responses in a bimodal oddball task. Psychol. Res. 73, 23–33 (2009).
pubmed: 18320216
Widmann, A., Engbert, R. & Schröger, E. Microsaccadic responses indicate fast categorization of sounds: a novel approach to study auditory cognition. J. Neurosci. 34, 11152–11158 (2014).
pubmed: 25122911
pmcid: 6705255
Li Hegner, Y. et al. BOLD adaptation in vibrotactile stimulation: neuronal networks involved in frequency discrimination. J. Neurophysiol. 97, 264–271 (2007).
pubmed: 17065253
Burton, H. & Sinclair, R. J. Attending to and remembering tactile stimuli: a review of brain imaging data and single-neuron responses. J. Clin. Neurophysiol. 17, 575–591 (2000).
pubmed: 11151976
Bisley, J. W. & Goldberg, M. E. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299, 81–86 (2003).
pubmed: 12511644
Hafed, Z. M., Lovejoy, L. P. & Krauzlis, R. J. Superior colliculus inactivation alters the relationship between covert visual attention and microsaccades. Eur. J. Neurosci. 37, 1169–1181 (2013).
pubmed: 23331638
pmcid: 4034743
Loughnane, G. M., Newman, D. P., Tamang, S., Kelly, S. P. & O’Connell, R. G. Antagonistic interactions between microsaccades and evidence accumulation processes during decision formation. J. Neurosci. 38, 2163–2176 (2018).
pubmed: 29371320
pmcid: 6596275
Di Stasi, L. L. et al. Microsaccade and drift dynamics reflect mental fatigue. Eur. J. Neurosci. 38, 2389–2398 (2013).
pubmed: 23675850
Rosenzweig, G. & Bonneh, Y. S. Familiarity revealed by involuntary eye movements on the fringe of awareness. Sci. Rep. 9, 3029 (2019).
pubmed: 30816258
pmcid: 6395845
Betta, E. & Turatto, M. Are you ready? I can tell by looking at your microsaccades. Neuroreport 17, 1001–1004 (2006).
pubmed: 16791092
Olmos-Solis, K., van Loon, A. M., Los, S. A. & Olivers, C. N. L. Oculomotor measures reveal the temporal dynamics of preparing for search. Prog. Brain Res. 236, 1–23 (2017).
pubmed: 29157407
Kliegl, R., Rolfs, M., Laubrock, J. & Engbert, R. Microsaccadic modulation of response times in spatial attention tasks. Psychol. Res. 73, 136–146 (2009).
pubmed: 19066951
Finnerty, G. T., Shadlen, M. N., Jazayeri, M., Nobre, A. C. & Buonomano, D. V. Time in cortical circuits. J. Neurosci. 35, 13912–13916 (2015).
pubmed: 26468192
pmcid: 4604229
Ivry, R. B. & Schlerf, J. E. Dedicated and intrinsic models of time perception. Trends Cognit. Sci. 12, 273–280 (2008).
Correa, A. & Nobre, A. C. Neural modulation by regularity and passage of time. J. Neurophysiol. 100, 1649–1655 (2008).
pubmed: 18632896
Steinman, R. M., Cunitz, R. J., Timberlake, G. T. & Herman, M. Voluntary control of microsaccades during maintained monocular fixation. Science 155, 1577–1579 (1967).
pubmed: 6020487
Otero-Millan, J., Macknik, S. L., Serra, A., Leigh, R. J. & Martinez-Conde, S. Triggering mechanisms in microsaccade and saccade generation: a novel proposal. Ann. N. Y. Acad. Sci. 1233, 107–116 (2011).
pubmed: 21950983
Otero-Millan, J., Optican, L. M., Macknik, S. L. & Martinez-Conde, S. Modeling the triggering of saccades, microsaccades, and saccadic intrusions. Front. Neurol. 9, 346 (2018).
pubmed: 29892256
pmcid: 5985689
Engbert, R. Computational modeling of collicular integration of perceptual responses and attention in microsaccades. J. Neurosci. 32, 8035–8039 (2012).
pubmed: 22674278
pmcid: 6620943
Engbert, R. & Mergenthaler, K. Microsaccades are triggered by low retinal image slip. Proc. Natl Acad. Sci. USA 103, 7192–7197 (2006).
pubmed: 16632611
Amit, R., Abeles, D., Bar-Gad, I. & Yuval-Greenberg, S. Temporal dynamics of saccades explained by a self-paced process. Sci. Rep. 7, 886 (2017).
pubmed: 28428540
pmcid: 5430543
Amit, R., Abeles, D. & Yuval-Greenberg, S. Transient and sustained effects of stimulus properties on the generation of microsaccades. J. Vis. 19, 6 (2019).
pubmed: 30640374
Hafed, Z. M., Goffart, L. & Krauzlis, R. J. A neural mechanism for microsaccade generation in the primate superior colliculus. Science 323, 940–943 (2009).
pubmed: 19213919
pmcid: 2655118
Engbert, R., Mergenthaler, K., Sinn, P. & Pikovsky, A. An integrated model of fixational eye movements and microsaccades. Proc. Natl Acad. Sci. USA 108, E765–E770 (2011).
pubmed: 21873243
Poletti, M., Rucci, M. & Carrasco, M. Selective attention within the foveola. Nat. Neurosci. 20, 1413–1417 (2017).
pubmed: 28805816
pmcid: 5929472
Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).
Levitt, H. Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am. 49, 467–477 (1971).
Badde, S., Röder, B. & Heed, T. Feeling a touch to the hand on the foot. Curr. Biol. 29, 1491–1497 (2019).
pubmed: 30955931
Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG-and MEG-data. J. Neurosci. Methods 164, 177–190 (2007).
pubmed: 17517438
Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).