An ecological framework to understand the efficacy of fecal microbiota transplantation.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
03 07 2020
03 07 2020
Historique:
received:
30
05
2019
accepted:
11
06
2020
entrez:
5
7
2020
pubmed:
6
7
2020
medline:
1
9
2020
Statut:
epublish
Résumé
Human gut microbiota plays critical roles in physiology and disease. Our understanding of ecological principles that govern the dynamics and resilience of this highly complex ecosystem remains rudimentary. This knowledge gap becomes more problematic as new approaches to modifying this ecosystem, such as fecal microbiota transplantation (FMT), are being developed as therapeutic interventions. Here we present an ecological framework to understand the efficacy of FMT in treating conditions associated with a disrupted gut microbiota, using the recurrent Clostridioides difficile infection as a prototype disease. This framework predicts several key factors that determine the efficacy of FMT. Moreover, it offers an efficient algorithm for the rational design of personalized probiotic cocktails to decolonize pathogens. We analyze data from both preclinical mouse experiments and a clinical trial of FMT to validate our theoretical framework. The presented results significantly improve our understanding of the ecological principles of FMT and have a positive translational impact on the rational design of general microbiota-based therapeutics.
Identifiants
pubmed: 32620839
doi: 10.1038/s41467-020-17180-x
pii: 10.1038/s41467-020-17180-x
pmc: PMC7334230
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3329Subventions
Organisme : NIAID NIH HHS
ID : U19 AI095219
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL089856
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI141529
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD093761
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023268
Pays : United States
Références
Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).
pubmed: 22424233
pmcid: 5050011
doi: 10.1016/j.cell.2012.01.035
HMP Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
doi: 10.1038/nature11234
HMP Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012).
doi: 10.1038/nature11209
Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).
pubmed: 29634682
pmcid: 7043356
doi: 10.1038/nm.4517
Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).
pubmed: 22674335
pmcid: 4208626
doi: 10.1126/science.1224203
Gerber, G. K. The dynamic microbiome. FEBS Lett. 588, 4131–4139 (2014).
pubmed: 24583074
doi: 10.1016/j.febslet.2014.02.037
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).
pubmed: 22972295
pmcid: 3577372
doi: 10.1038/nature11550
Lemon, K. P., Armitage, G. C., Relman, D. A. & Fischbach, M. A. Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med. 4, 137rv135 (2012).
doi: 10.1126/scitranslmed.3004183
Zmora, N., Soffer, E. & Elinav, E. Transforming medicine with the microbiome. Sci. Transl. Med. 11, eaaw1815 (2019).
pubmed: 30700573
doi: 10.1126/scitranslmed.aaw1815
Borody, T. J., Paramsothy, S. & Agrawal, G. Fecal microbiota transplantation: indications, methods, evidence, and future directions. Curr. Gastroenterol. Rep. 15, 1–7 (2013).
doi: 10.1007/s11894-013-0337-1
Aroniadis, O. C. & Brandt, L. J. Fecal microbiota transplantation: past, present and future. Curr. Opin. Gastroenterol. 29, 79–84 (2013).
pubmed: 23041678
doi: 10.1097/MOG.0b013e32835a4b3e
Alang, N. & Kelly, C. R. Weight gain after fecal microbiota transplantation. Open Forum Infect. Dis. 2, ofv004 (2015).
pubmed: 26034755
pmcid: 4438885
doi: 10.1093/ofid/ofv004
Wang, S. et al. Systematic review: adverse events of fecal microbiota transplantation. PLoS ONE 11, e0161174 (2016).
pubmed: 27529553
pmcid: 4986962
doi: 10.1371/journal.pone.0161174
El-Matary, W. Fecal microbiota transplantation: long-term safety issues. Am. J. Gastroenterol. 108, 1537 (2013).
pubmed: 24005358
doi: 10.1038/ajg.2013.208
DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).
pubmed: 31665575
doi: 10.1056/NEJMoa1910437
Bakken, J. S. et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 9, 1044–1049 (2011).
pubmed: 21871249
pmcid: 3223289
doi: 10.1016/j.cgh.2011.08.014
Persky, S. E. & Brandt, L. J. Treatment of recurrent Clostridium difficile-associated diarrhea by administration of donated stool directly through a colonoscope. Am. J. Gastroenterol. 95, 3283–3285 (2000).
pubmed: 11095355
Aas, J., Gessert, C. E. & Bakken, J. S. Recurrent Clostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube. Clin. Infect. Dis. 36, 580–585 (2003).
pubmed: 12594638
doi: 10.1086/367657
Youngster, I. et al. Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin. Infect. Dis. 58, 1515–1522 (2014).
pubmed: 24762631
pmcid: 4017893
doi: 10.1093/cid/ciu135
Youngster, I. et al. Oral, capsulized, frozen fecal microbiota transplantation for relapsing clostridium difficile infection. JAMA 312, 1772–1778 (2014).
pubmed: 25322359
doi: 10.1001/jama.2014.13875
Cammarota, G. et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut 66, 569–580 (2017).
pubmed: 28087657
doi: 10.1136/gutjnl-2016-313017
Kassam, Z. et al. Donor screening for fecal microbiota transplantation. N. Engl. J. Med. 381, 2070–2072 (2019).
pubmed: 31665572
doi: 10.1056/NEJMc1913670
Kassam, Z., Lee, C. H., Yuan, Y. & Hunt, R. H. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am. J. Gastroenterol. 108, 500–508 (2013).
pubmed: 23511459
doi: 10.1038/ajg.2013.59
Brandt, L. J. & Aroniadis, O. C. An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Gastrointest. Endosc. 78, 240–249 (2013).
pubmed: 23642791
doi: 10.1016/j.gie.2013.03.1329
Aroniadis, O. C. & Brandt, L. J. Fecal microbiota transplantation: past, present and future. Curr. Opin. Gastroenterol. 29, 79–84 (2012).
doi: 10.1097/MOG.0b013e32835a4b3e
Borody, T. J. & Khoruts, A. Fecal microbiota transplantation and emerging applications. Nat. Rev. Gastroenterol. Hepatol. 9, 88–96 (2011).
pubmed: 22183182
doi: 10.1038/nrgastro.2011.244
van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).
pubmed: 23323867
doi: 10.1056/NEJMoa1205037
Paramsothy, S. et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J. Crohns Colitis 11, 1180–1199 (2017).
pubmed: 28486648
doi: 10.1093/ecco-jcc/jjx063
Rossen, N. G. et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149, 110–118.e4 (2015).
pubmed: 25836986
doi: 10.1053/j.gastro.2015.03.045
Moayyedi, P. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102–109.e6 (2015).
pubmed: 25857665
doi: 10.1053/j.gastro.2015.04.001
Paramsothy, S. et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389, 1218–1228 (2017).
pubmed: 28214091
doi: 10.1016/S0140-6736(17)30182-4
Johnsen, P. H. et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol. Hepatol. 3, 17–24 (2018).
pubmed: 29100842
doi: 10.1016/S2468-1253(17)30338-2
Halkjær, S. I. et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut 67, 2107–2115 (2018).
pubmed: 29980607
doi: 10.1136/gutjnl-2018-316434
Halkjær, S. I., Boolsen, A. W., Günther, S., Christensen, A. H. & Petersen, A. M. Can fecal microbiota transplantation cure irritable bowel syndrome? World J. Gastroenterol. 23, 4112–4120 (2017).
pubmed: 28652664
pmcid: 5473130
doi: 10.3748/wjg.v23.i22.4112
Liu, S.-X. et al. Fecal microbiota transplantation induces remission of infantile allergic colitis through gut microbiota re-establishment. World J. Gastroenterol. 23, 8570–8581 (2017).
pubmed: 29358865
pmcid: 5752717
doi: 10.3748/wjg.v23.i48.8570
Mulle, J. G., Sharp, W. G. & Cubells, J. F. The gut microbiome: a new frontier in autism research. Curr. Psychiatry Rep. 15, 337 (2013).
pubmed: 23307560
pmcid: 3564498
doi: 10.1007/s11920-012-0337-0
Zhang, Z. et al. Impact of fecal microbiota transplantation on obesity and metabolic syndrome—a systematic review. Nutrients 11, 2291 (2019).
pmcid: 6835402
doi: 10.3390/nu11102291
Schepici, G., Silvestro, S., Bramanti, P. & Mazzon, E. The gut microbiota in multiple sclerosis: an overview of clinical trials. Cell Transplant. https://doi.org/10.1177/0963689719873890 (2019).
Kao, D. et al. Fecal microbiota transplantation in the management of hepatic encephalopathy. Hepatology 63, 339–340 (2016).
pubmed: 26264779
doi: 10.1002/hep.28121
NIH U.S. National Library of Medicine. Characterization of fecal microbiome changes after administration of PRIM-DJ2727 in Parkinson’s disease patients. https://clinicaltrials.gov/ct2/show/NCT03026231 (2017).
Vaughn, B. P., Rank, K. M. & Khoruts, A. Fecal microbiota transplantation: current status in treatment of GI and liver disease. Clin. Gastroenterol. Hepatol. 17, 353–361 (2019).
pubmed: 30055267
doi: 10.1016/j.cgh.2018.07.026
Rupnik, M., Wilcox, M. H. & Gerding, D. N. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7, 526–536 (2009).
pubmed: 19528959
doi: 10.1038/nrmicro2164
Lessa, F. C. et al. Burden of Clostridium difficile Infection in the United States. N. Engl. J. Med. 372, 825–834 (2015).
pubmed: 25714160
doi: 10.1056/NEJMoa1408913
Leffler, D. A. & Lamont, J. T. Clostridium difficile infection. N. Engl. J. Med. 372, 1539–1548 (2015).
pubmed: 25875259
doi: 10.1056/NEJMra1403772
Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).
pubmed: 24096337
pmcid: 4194195
doi: 10.1038/nri3535
Buffie, C. G. et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 80, 62–73 (2012).
pubmed: 22006564
pmcid: 3255689
doi: 10.1128/IAI.05496-11
Vardakas, K. Z. et al. Treatment failure and recurrence of Clostridium difficile infection following treatment with vancomycin or metronidazole: a systematic review of the evidence. Int. J. Antimicrob. Agents 40, 1–8 (2012).
pubmed: 22398198
doi: 10.1016/j.ijantimicag.2012.01.004
Kelly, C. P. & LaMont, J. T. Clostridium difficile—more difficult than ever. N. Engl. J. Med. 359, 1932–1940 (2008).
pubmed: 18971494
doi: 10.1056/NEJMra0707500
McFarland, L. V., Elmer, G. W. & Surawicz, C. M. Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease. Am. J. Gastroenterol. 97, 1769 (2002).
pubmed: 12135033
doi: 10.1111/j.1572-0241.2002.05839.x
Weingarden, A. R. et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G310–G319 (2014).
pubmed: 24284963
doi: 10.1152/ajpgi.00282.2013
McDonald, J. A. K. et al. Inhibiting growth of Clostridioides difficile by restoring valerate, produced by the intestinal microbiota. Gastroenterology 155, 1495–1507.e15 (2018).
pubmed: 30025704
doi: 10.1053/j.gastro.2018.07.014
Mullish, B. H. et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection. Gut 68, 1791–1800 (2019).
pubmed: 30816855
doi: 10.1136/gutjnl-2018-317842
Khoruts, A. & Sadowsky, M. J. Understanding the mechanisms of faecal microbiota transplantation. Nat. Rev. Gastroenterol. Hepatol. 13, 508–516 (2016).
pubmed: 27329806
pmcid: 5909819
doi: 10.1038/nrgastro.2016.98
Sadowsky, M. J. & Khoruts, A. Faecal microbiota transplantation is promising but not a panacea. Nat. Microbiol. 1, 16015 (2016).
pubmed: 27572174
doi: 10.1038/nmicrobiol.2016.15
Theriot, C. M. & Young, V. B. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu. Rev. Microbiol. 69, 445–461 (2015).
pubmed: 26488281
pmcid: 4892173
doi: 10.1146/annurev-micro-091014-104115
Seekatz, A. M. & Young, V. B. Clostridium difficile and the microbiota. J. Clin. Invest. 124, 4182–4189 (2014).
pubmed: 25036699
pmcid: 4191019
doi: 10.1172/JCI72336
Lee, C. H. et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent clostridium difficile infection: a randomized clinical trial. JAMA 315, 142–149 (2016).
pubmed: 26757463
doi: 10.1001/jama.2015.18098
Razik, R., Osman, M., Lieberman, A., Allegretti, J. R. & Kassam, Z. Faecal microbiota transplantation for Clostridium difficile infection: a multicentre study of non-responders. Med. J. Aust. 207, 159–160 (2017).
pubmed: 28814217
doi: 10.5694/mja16.01452
Walter, J. & Ley, R. The human gut microbiome: ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65, 411–429 (2011).
pubmed: 21682646
doi: 10.1146/annurev-micro-090110-102830
Jordán, F. et al. Diversity of key players in the microbial ecosystems of the human body. Sci. Rep. 5, 15920 (2015).
pubmed: 26514870
pmcid: 4626846
doi: 10.1038/srep15920
Sommer, F., Anderson, J. M., Bharti, R., Raes, J. & Rosensteil, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15, 630–638 (2017).
pubmed: 28626231
doi: 10.1038/nrmicro.2017.58
Mallon, C. A., Elsas, J. Dvan & Salles, J. F. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 23, 719–729 (2015).
pubmed: 26439296
doi: 10.1016/j.tim.2015.07.013
Shiganova, T. A. Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in pelagic community structure. Fish. Oceanogr. 7, 305–310 (1998).
doi: 10.1046/j.1365-2419.1998.00080.x
Green, P. T. et al. Invasional meltdown: invader–invader mutualism facilitates a secondary invasion. Ecology 92, 1758–1768 (2011).
pubmed: 21939072
doi: 10.1890/11-0050.1
Bucci, V. et al. MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).
pubmed: 27259475
pmcid: 4893271
doi: 10.1186/s13059-016-0980-6
Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).
pubmed: 24348232
pmcid: 3861043
doi: 10.1371/journal.pcbi.1003388
Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).
pubmed: 25337874
doi: 10.1038/nature13828
Bashan, A. et al. Universality of human microbial dynamics. Nature 534, 259–262 (2016).
pubmed: 27279224
pmcid: 4902290
doi: 10.1038/nature18301
Pollock, N. R. et al. Comparison of Clostridioides difficile stool toxin concentrations in adults with symptomatic infection and asymptomatic carriage using an ultrasensitive quantitative immunoassay. Clin. Infect. Dis. 68, 78–86 (2019).
pubmed: 29788296
Becattini, S., Taur, Y. & Pamer, E. G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 22, 458–478 (2016).
pubmed: 27178527
pmcid: 4885777
doi: 10.1016/j.molmed.2016.04.003
McDonald, L. C. et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66, e1–e48 (2018).
pubmed: 29462280
pmcid: 6018983
doi: 10.1093/cid/cix1085
Hocquart, M. et al. Early fecal microbiota transplantation improves survival in severe Clostridium difficile infections. Clin. Infect. Dis. 66, 645–650 (2018).
pubmed: 29020328
doi: 10.1093/cid/cix762
Allegretti, J. R. et al. Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment. Pharm. Ther. 43, 1142–1153 (2016).
doi: 10.1111/apt.13616
Vermeire, S. et al. Donor species richness determines faecal microbiota transplantation success in inflammatory bowel disease. J. Crohns Colitis 10, 387–394 (2016).
pubmed: 26519463
doi: 10.1093/ecco-jcc/jjv203
Kump, P. et al. The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis. Aliment. Pharmacol. Ther. 47, 67–77 (2018).
pubmed: 29052237
doi: 10.1111/apt.14387
Osman, M. et al. Donor efficacy in fecal microbiota transplantation for recurrent Clostridium difficile: evidence from a 1,999-patient cohort. Open Forum Infect. Dis. 3, 841 (2016).
doi: 10.1093/ofid/ofw194.48
Wilson, B. C., Vatanen, T., Cutfield, W. S. & O’Sullivan, J. M. The super-donor phenomenon in fecal microbiota transplantation. Front. Cell Infect. Microbiol. 9, 2 (2019).
pubmed: 30719428
pmcid: 6348388
doi: 10.3389/fcimb.2019.00002
Li, S. S. et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 352, 586–589 (2016).
pubmed: 27126044
doi: 10.1126/science.aad8852
Smillie, C. S. et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe 23, 229–240.e5 (2018).
pubmed: 29447696
doi: 10.1016/j.chom.2018.01.003
pmcid: 8318347
Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 10, eaap9489 (2018).
pubmed: 30257956
pmcid: 6468978
doi: 10.1126/scitranslmed.aap9489
Bunnik, E. M., Aarts, N. & Chen, L. A. Physicians must discuss potential long-term risks of fecal microbiota transplantation to ensure informed consent. Am. J. Bioeth. 17, 61–63 (2017).
pubmed: 28430073
doi: 10.1080/15265161.2017.1299816
Hudson, L. E., Anderson, S. E., Corbett, A. H. & Lamb, T. J. Gleaning insights from fecal microbiota transplantation and probiotic studies for the rational design of combination microbial therapies. Clin. Microbiol. Rev. 30, 191–231 (2017).
pubmed: 27856521
doi: 10.1128/CMR.00049-16
Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).
pubmed: 22796884
doi: 10.1038/nrmicro2832
Levy, R. & Borenstein, E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc. Natl Acad. Sci. USA 110, 12804–12809 (2013).
pubmed: 23858463
doi: 10.1073/pnas.1300926110
pmcid: 3732988
Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).
pubmed: 27452230
doi: 10.1038/nrmicro.2016.84
Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).
pubmed: 24332541
doi: 10.1016/j.cub.2013.10.077
Staley, C. et al. Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation. Microbiome 6, 166 (2018).
pubmed: 30227892
pmcid: 6145197
doi: 10.1186/s40168-018-0549-6
Darby, A. et al. Cytotoxic and pathogenic properties of Klebsiella oxytoca isolated from laboratory animals. PLoS ONE 9, e100542 (2014).
pubmed: 25057966
pmcid: 4109914
doi: 10.1371/journal.pone.0100542
Weingarden, A. et al. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 3, 10 (2015).
pubmed: 25825673
pmcid: 4378022
doi: 10.1186/s40168-015-0070-0
Fischer, M. et al. Predictors of early failure after fecal microbiota transplantation for the therapy of Clostridium difficile infection: a multicenter study. Am. J. Gastroenterol. 111, 1024–1031 (2016).
pubmed: 27185076
doi: 10.1038/ajg.2016.180
Gibson, T. E., Bashan, A., Cao, H.-T., Weiss, S. T. & Liu, Y.-Y. On the origins and control of community types in the human microbiome. PLoS Comput. Biol. 12, e1004688 (2016).
pubmed: 26866806
pmcid: 4750989
doi: 10.1371/journal.pcbi.1004688
Posfai, A., Taillefumier, T. & Wingreen, N. S. Metabolic trade-offs promote diversity in a model ecosystem. Phys. Rev. Lett. 118, 028103 (2017).
pubmed: 28128613
pmcid: 5743855
doi: 10.1103/PhysRevLett.118.028103
Taillefumier, T., Posfai, A., Meir, Y. & Wingreen, N. S. Microbial consortia at steady supply. eLife 6, e22644 (2017).
pubmed: 28473032
pmcid: 5419753
doi: 10.7554/eLife.22644
Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018).
pubmed: 30061657
pmcid: 6065391
doi: 10.1038/s41467-018-05308-z
Good, B. H., Martis, S. & Hallatschek, O. Adaptation limits ecological diversification and promotes ecological tinkering during the competition for substitutable resources. Proc. Natl. Acad. Sci. USA 115, E10407–E10416 (2018).
pubmed: 30322918
doi: 10.1073/pnas.1807530115
pmcid: 6217437
Marsland, R. et al. Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. PLoS Comput. Biol. 15, e1006793 (2019).
pubmed: 30721227
pmcid: 6386421
doi: 10.1371/journal.pcbi.1006793
Zaccaria, M., Dedrick, S. & Momeni, B. Modeling microbial communities: a call for collaboration between experimentalists and theorists. Processes, 5, 53 (2017).
doi: 10.3390/pr5040053
Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).
pubmed: 26668389
Shah, P. et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat. Commun. 7, 1–15 (2016).
doi: 10.1038/ncomms11535
Vrancken, G., Gregory, A. C., Huys, G. R. B., Faust, K. & Raes, J. Synthetic ecology of the human gut microbiota. Nat. Rev. Microbiol. 17, 754–763 (2019).
pubmed: 31578461
doi: 10.1038/s41579-019-0264-8
Xiao, Y. et al. Mapping the ecological networks of microbial communities. Nat. Commun. 8, 2042 (2017).
pubmed: 29229902
pmcid: 5725606
doi: 10.1038/s41467-017-02090-2
Goel, N., Maitra, S. & Montroll, E. On the Volterra and other nonlinear models of interacting populations. Rev. Mod. Phys. 43, 231 (1971).
doi: 10.1103/RevModPhys.43.231