Visualizing the effectiveness of face masks in obstructing respiratory jets.


Journal

Physics of fluids (Woodbury, N.Y. : 1994)
ISSN: 1070-6631
Titre abrégé: Phys Fluids (1994)
Pays: United States
ID NLM: 101286829

Informations de publication

Date de publication:
01 Jun 2020
Historique:
entrez: 7 7 2020
pubmed: 7 7 2020
medline: 7 7 2020
Statut: ppublish

Résumé

The use of face masks in public settings has been widely recommended by public health officials during the current COVID-19 pandemic. The masks help mitigate the risk of cross-infection via respiratory droplets; however, there are no specific guidelines on mask materials and designs that are most effective in minimizing droplet dispersal. While there have been prior studies on the performance of medical-grade masks, there are insufficient data on cloth-based coverings, which are being used by a vast majority of the general public. We use qualitative visualizations of emulated coughs and sneezes to examine how material- and design-choices impact the extent to which droplet-laden respiratory jets are blocked. Loosely folded face masks and bandana-style coverings provide minimal stopping-capability for the smallest aerosolized respiratory droplets. Well-fitted homemade masks with multiple layers of quilting fabric, and off-the-shelf cone style masks, proved to be the most effective in reducing droplet dispersal. These masks were able to curtail the speed and range of the respiratory jets significantly, albeit with some leakage through the mask material and from small gaps along the edges. Importantly, uncovered emulated coughs were able to travel notably farther than the currently recommended 6-ft distancing guideline. We outline the procedure for setting up simple visualization experiments using easily available materials, which may help healthcare professionals, medical researchers, and manufacturers in assessing the effectiveness of face masks and other personal protective equipment qualitatively.

Identifiants

pubmed: 32624649
doi: 10.1063/5.0016018
pii: 5.0016018
pmc: PMC7327717
doi:

Types de publication

Journal Article

Langues

eng

Pagination

061708

Informations de copyright

Copyright © 2020 Author(s).

Références

N Engl J Med. 2020 May 21;382(21):2049-2055
pubmed: 32202722
J Hyg (Lond). 1946 Sep;44(6):471-9
pubmed: 20475760
J R Soc Interface. 2009 Dec 6;6 Suppl 6:S727-36
pubmed: 19815575
J Occup Environ Hyg. 2014;11(8):509-18
pubmed: 24467190
Curr Opin Virol. 2018 Feb;28:142-151
pubmed: 29452994
Ann Occup Hyg. 2010 Oct;54(7):789-98
pubmed: 20584862
BMC Public Health. 2013 Sep 08;13:811
pubmed: 24010919
J Infect. 2011 Jan;62(1):1-13
pubmed: 21094184
Emerg Infect Dis. 2006 Nov;12(11):1657-62
pubmed: 17283614
J Thorac Dis. 2018 Mar;10(3):2059-2069
pubmed: 29707364
J Aerosol Sci. 2009 Feb;40(2):122-133
pubmed: 32287373
Lancet Respir Med. 2020 May;8(5):434-436
pubmed: 32203710
JAMA. 2020 Mar 4;:
pubmed: 32129805
Indoor Air. 2014 Dec;24(6):580-91
pubmed: 24628862
Eur Respir J. 1994 Jul;7(7):1246-53
pubmed: 7925902
Indoor Air. 2007 Jun;17(3):211-25
pubmed: 17542834
Eur J Epidemiol. 1987 Dec;3(4):327-35
pubmed: 2446913
Disaster Med Public Health Prep. 2013 Aug;7(4):413-8
pubmed: 24229526
Indoor Air. 2006 Apr;16(2):111-28
pubmed: 16507039
Ann Intern Med. 2020 Jul 7;173(1):W22-W23
pubmed: 32251511
Int J Surg. 2020 Jun;78:185-193
pubmed: 32305533
J Hosp Infect. 2011 Mar;77(3):213-22
pubmed: 21194796
J Occup Environ Hyg. 2005 Mar;2(3):143-54
pubmed: 15764538
Indoor Air. 2009 Dec;19(6):517-25
pubmed: 19840145
Nature. 2020 Jun;582(7813):557-560
pubmed: 32340022
BMC Infect Dis. 2019 Jan 31;19(1):101
pubmed: 30704406
Clin Orthop Relat Res. 1980 May;(148):160-2
pubmed: 7379387
Emerg Infect Dis. 2009 Feb;15(2):233-41
pubmed: 19193267
Emerg Infect Dis. 2020 May;26(5):967-975
pubmed: 32027586
Clin Infect Dis. 2009 Jul 15;49(2):275-7
pubmed: 19522650
Phys Fluids (1994). 2020 May 1;32(5):053310
pubmed: 32574229
J Med Virol. 2009 Sep;81(9):1674-9
pubmed: 19626609
Nat Med. 2020 May;26(5):676-680
pubmed: 32371934
Emerg Infect Dis. 2020 Jun;26(6):1343-1345
pubmed: 32163030
Indoor Air. 2006 Oct;16(5):335-47
pubmed: 16948710
JAMA. 2020 Mar 26;:
pubmed: 32215590
Ann Intern Med. 2020 May 5;172(9):577-582
pubmed: 32150748
Indoor Air. 2007 Feb;17(1):2-18
pubmed: 17257148
J Pathog. 2013;2013:493960
pubmed: 23365758
J Occup Environ Hyg. 2012;9(12):681-90
pubmed: 23033849
Indoor Air. 2002 Sep;12(3):147-64
pubmed: 12244745
Int J Nurs Stud. 2020 Aug;108:103629
pubmed: 32512240
J Hosp Infect. 2006 Oct;64(2):100-14
pubmed: 16916564
PLoS One. 2013 Nov 27;8(11):e80244
pubmed: 24312206
J Infect Dis. 2020 Apr 16;:
pubmed: 32301491
ACS Nano. 2020 May 26;14(5):6339-6347
pubmed: 32329337
Nat Med. 2020 May;26(5):672-675
pubmed: 32296168
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):11875-11877
pubmed: 32404416
J R Soc Interface. 2013 Sep 11;10(88):20130560
pubmed: 24026469
Exp Fluids. 2016;57(2):24
pubmed: 32214638

Auteurs

Siddhartha Verma (S)

Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA.

Manhar Dhanak (M)

Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA.

John Frankenfield (J)

Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA.

Classifications MeSH