Towards multi-modal data fusion for super-resolution and denoising of 4D-Flow MRI.


Journal

International journal for numerical methods in biomedical engineering
ISSN: 2040-7947
Titre abrégé: Int J Numer Method Biomed Eng
Pays: England
ID NLM: 101530293

Informations de publication

Date de publication:
09 2020
Historique:
received: 06 01 2020
revised: 26 05 2020
accepted: 27 05 2020
pubmed: 7 7 2020
medline: 9 11 2021
entrez: 7 7 2020
Statut: ppublish

Résumé

4D-Flow magnetic resonance imaging (MRI) has enabled in vivo time-resolved measurement of three-dimensional blood flow velocities in the human vascular system. However, its clinical use has been hampered by two main issues, namely, low spatio-temporal resolution and acquisition noise. While patient-specific computational fluid dynamics (CFD) simulations can address the resolution and noise issues, its fidelity is impacted by accuracy of estimation of boundary conditions, model parameters, vascular geometry, and flow model assumptions. In this paper a scheme to address limitations of both modalities through data-fusion is presented. The solutions of the patient-specific CFD simulation are characterized using proper orthogonal decomposition (POD). Next, a process of projecting the 4D-Flow MRI data onto the POD basis and projection coefficient mapping using generalized dynamic mode decomposition (DMD) enables simultaneous super-resolution and denoising of 4D-Flow MRI. The method has been tested using numerical phantoms derived from patient-specific aneurysmal geometries and applied to in vivo 4D-Flow MRI data.

Identifiants

pubmed: 32627366
doi: 10.1002/cnm.3381
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e3381

Informations de copyright

© 2020 John Wiley & Sons Ltd.

Références

Can A, Du R. Association of hemodynamic factors with intracranial aneurysm formation and rupture: systematic review and meta-analysis. Neurosurgery. 2015;78(4):510-520.
Nixon AM, Gunel M, Sumpio BE. The critical role of hemodynamics in the development of cerebral vascular disease: a review. J Neurosurg. 2010;112(6):1240-1253.
Meng H, Tutino V, Xiang J, Siddiqui A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. Am J Neuroradiol. 2014;35(7):1254-1262.
Shojima M, Oshima M, Takagi K, et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke. 2004;35(11):2500-2505.
Boussel L, Rayz V, Martin A, et al. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn Reson Med. 2009;61(2):409-417.
Ebbers T, Wigstrom L, Bolger A, Wranne B, Karlsson M. Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J Biomech Eng. 2002;124(3):288-293.
Stalder A, Russe M, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med. 2008;60(5):1218-1231.
Dietz A, Berkefeld J, Theron JG, et al. Endovascular treatment of symptomatic carotid stenosis using stent placement: long-term follow-up of patients with a balanced surgical risk/benefit ratio. Stroke. 2001;32(8):1855-1859.
Bishop C, Powell S, Rutt D, Browse N. Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke. 1986;17(5):913-915.
Moran PR. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging. 1982 jan;1(4):197-203. http://linkinghub.elsevier.com/retrieve/pii/0730725X82901709.
Markl M, Chan FP, Alley MT, et al. Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging. 2003;17(4):499-506.
Nayak KS, Nielsen JF, Bernstein MA, et al. Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson. 2015;17(1):1-26.
Collins RT II, Laughlin ME, Lang SM, et al. Real-time transthoracic vector flow imaging of the heart in pediatric patients. Prog Pediatr Cardiol. 2019;53:28-36.
Harloff A, Nußbaumer A, Bauer S, et al. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magn Reson Med. 2010;63(6):1529-1536.
Rispoli VC, Nielsen JF, Nayak KS, Carvalho JL. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI. Biomed Eng Online. 2015;14(1):110.
Cibis M, Jarvis K, Markl M, et al. The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: evaluation using computational fluid dynamics. J Biomech. 2015;48(12):2984-2989.
Vali A, Abla AA, Lawton MT, Saloner D, Rayz VL. Computational fluid dynamics modeling of contrast transport in basilar aneurysms following flow-altering surgeries. J Biomech. 2017 jan;50:195-201. http://linkinghub.elsevier.com/retrieve/pii/S002192901631199X.
Lorenz R, Bock J, Snyder J, Korvink JG, Jung BA, Markl M. Influence of eddy current, Maxwell and gradient field corrections on 3D flow visualization of 3D CINE PC-MRI data. Magn Reson Med. 2014;72(1):33-40.
Ong F, Uecker M, Tariq U, et al. Robust 4D flow denoising using divergence-free wavelet transform. Magn Reson Med. 2015;73(2):828-842.
Deriaz E, Perrier V. Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows. J Turbulence. 2006;7:N3. https://doi.org/10.1080/14685240500260547.
Busch J, Giese D, Wissmann L, Kozerke S. Reconstruction of divergence-free velocity fields from cine 3D phase-contrast flow measurements. Magn Reson Med. 2013;69(1):200-210.
Song SM, Napel S, Glover GH, Pelc NJ. Noise reduction in three-dimensional phase-contrast MR velocity measurements. J Magn Reson Imaging. 1993;3(4):587-596.
Tafti PD, Delgado-Gonzalo R, Stalder AF, Unser M. Variational enhancement and denoising of flow field images. In: Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on IEEE; 2011:1061-1064.
Bostan E, Lefkimmiatis S, Vardoulis O, Stergiopulos N, Unser M. Improved variational denoising of flow fields with application to phase-contrast MRI data. Sign Proces Lett. 2015;22(6):762-766.
Johnston BM, Johnston PR, Corney S, Kilpatrick D. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J Biomech. 2004;37(5):709-720.
Ku DN. Blood flow in arteries. Annu Rev Fluid Mech. 1997;29(1):399-434.
Shahcheraghi N, Dwyer H, Cheer A, Barakat A, Rutaganira T. Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J Biomech Eng. 2002;124(4):378-387.
Cebral JR, Putman CM, Alley MT, Hope T, Bammer R, Calamante F. Hemodynamics in normal cerebral arteries: qualitative comparison of 4D phase-contrast magnetic resonance and image-based computational fluid dynamics. J Eng Math. 2009;64(4):367-378.
Ren Y, Chen GZ, Liu Z, Cai Y, Lu GM, Li ZY. Reproducibility of image-based computational models of intracranial aneurysm: a comparison between 3D rotational angiography, CT angiography and MR angiography. Biomed Eng Online. 2016;15(1):50.
Geers A, Larrabide I, Radaelli AG, et al. Patient-specific computational hemodynamics of intracranial aneurysms from 3D rotational angiography and CT angiography: an in vivo reproducibility study. Am J Neuroradiol. 2011;32(3):581-586.
Patankar S. Numerical Heat Transfer and Fluid Flow. New York: CRC Press, Taylor & Francis Group; 1980.
Tikhonov AN, Goncharsky A, Stepanov V, Yagola AG. Numerical Methods for the Solution of Ill-Posed Problems. Vol 328. Dordrecht, Netherlands: Springer Science & Business Media; 2013.
Funke SW, Nordaas M, Evju Ø, Alnaes MS, Mardal KA. Variational data assimilation for transient blood flow simulations: cerebral aneurysms as an illustrative example. Int J Numer Meth Biomed Eng. 2019;35(1):e3152.
Liu L, Funamoto K, Hayase T. Numerical experiment for ultrasonic-measurement-integrated simulation of developed laminar pipe flow using axisymmetric model. J Biomechan Sci Eng. 2008;3(2):101-115.
Kato T, Funamoto K, Hayase T, et al. Development and feasibility study of a two-dimensional ultrasonic-measurement-integrated blood flow analysis system for hemodynamics in carotid arteries. Med Biol Eng Comput. 2014;52(11):933-943.
Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. J Magn Reson Imaging. 2012;36(5):1015-1036.
Bakhshinejad A, Baghaie A, Vali A, Saloner D, Rayz VL, D'Souza RM. Merging computational fluid dynamics and 4D flow MRI using proper orthogonal decomposition and ridge regression. J Biomech. 2017;58:162-173. https://doi.org/10.1016/j.jbiomech.2017.05.004.
Evensen G. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynam. 2003;53(4):343-367.
Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am J Neuroradiol. 2003;24(4):559-566.
Steinman DA, Taylor CA. Flow imaging and computing: large artery hemodynamics. Ann Biomed Eng. 2005;33(12):1704-1709.
Tang C, Blatter DD, Parker DL. Accuracy of phase-contrast flow measurements in the presence of partial-volume effects. J Magn Reson Imaging. 1993;3(2):377-385.
Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr. 1986;10(5):715-722. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3528245.
Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M. 4D flow imaging with MRI. Cardiovasc Diag Therapy. 2014;4(2):173-192.
Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 2015;17(1):72. https://doi.org/10.1186/s12968-015-0174-5.
Andrews C, Davies J, Schwarz G. Adaptive data compression. Proc IEEE. 1967;55(3):267-277.
Berkooz G, Holmes P, Lumley JL. The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech. 1993;25(1):539-575.
Kosambi D. Statistics in function space. J Indian Math Soc. 1943;7(1):76-88.
Karhunen K. Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Vol 37. Helsinki, Finland: Universitat Helsinki; 1947.
Graftieaux L, Michard M, Grosjean N. Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol. 2001;12(9):1422-1429.
Rowley CW, Colonius T, Murray RM. Model reduction for compressible flows using POD and Galerkin projection. Phys D. 2004;189(1-2):115-129.
Sirovich L. Method of snapshots. Q Appl Math. 1987;45:561-571.
Kerschen G, Golinval JC, Vakakis AF, Bergman LA. The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlin Dynam. 2005;41(1-3):147-169.
del Castillo-Negrete D, Spong DA, Hirshman SP. Proper orthogonal decomposition methods for noise reduction in particle-based transport calculations. Phys Plasmas. 2008;15(9):092308.
Schmid PJ. Dynamic mode decomposition of numerical and experimental data. J Fluid Mech. 2010;656:5-28.
Jonathan HT, Rowley CW, Luchtenburg DM, Brunton SL, Kutz JN. On dynamic mode decomposition: Theory and applications. J Comput Dyn. 2014;1(2):391.
Gavish M, Donoho DL. The optimal hard threshold for singular values is 4/\sqrt(3). IEEE Trans Inf Theory. 2014;60(8):5040-5053.
Rayz VL, Boussel L, Acevedo-Bolton G, et al. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J Biomech Eng. 2008;130(5):051011.
Cebral J, Castro M, Putman C, Alperin N. Flow-area relationship in internal carotid and vertebral arteries. Physiol Meas. 2008;29(5):585-594.
Chandler WL, Schmer G. Evaluation of a new dynamic viscometer for measuring the viscosity of whole blood and plasma. Clin Chem. 1986;32(3):505-507.
Evans RL, Kirkwood RB, Opsahl DG. The dynamic viscosity of some human blood. Biorheology. 1971;8(3-4):125-128.
Heiserman JE, Drayer BP, Keller P, Fram EK. Intracranial vascular stenosis and occlusion: evaluation with three-dimensional time-of-flight MR angiography. Radiology. 1992;185(3):667-673.
Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA. An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput. 2008;46(11):1097-1112. https://doi.org/10.1007/s11517-008-0420-1.
Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G. Meshlab: an open-source mesh processing tool. In: Eurographics Italian chapter conference, vol. 2008; 2008:129-136.
Valen-Sendstad K, Piccinelli M, Steinman DA. High-resolution computational fluid dynamics detects flow instabilities in the carotid siphon: implications for aneurysm initiation and rupture? J Biomech. 2014;47(12):3210-3216.
Khan M, Valen-Sendstad K, Steinman D. Narrowing the expertise gap for predicting intracranial aneurysm hemodynamics: impact of solver numerics versus mesh and time-step resolution. Am J Neuroradiol. 2015;36(7):1310-1316.
Johnson KM, Markl M. Improved SNR in phase contrast velocimetry with five-point balanced flow encoding. Magn Reson Med. 2010;63(2):349-355.
Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging. 1993;3(3):521-530.
Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics. 2002;22(3):651-671.
Puiseux T, Sewonu A, Meyrignac O, et al. Reconciling PC-MRI and CFD: an in-vitro study. NMR Biomed. 2019;32(5):e4063.
Theil H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In: Henri Theil's Contributions to Economics and Econometrics Springer; 1992:345-381.
Sen PK. Estimates of the regression coefficient based on Kendall's tau. J Am Stat Assoc. 1968;63(324):1379-1389.
Akritas MG, Murphy SA, Lavalley MP. The Theil-Sen estimator with doubly censored data and applications to astronomy. J Am Stat Assoc. 1995;90(429):170-177.
Lavagnini I, Badocco D, Pastore P, Magno F. Theil-Sen nonparametric regression technique on univariate calibration, inverse regression and detection limits. Talanta. 2011;87:180-188.
Rousseeuw PJ, Leroy AM. Robust Regression and Outlier Detection. Vol 589. Hoboken, NJ: John Wiley & Sons; 2005.
Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. Am J Roentgenol. 2011;197(3):547-555.
Brown RW, Cheng YCN, Haacke EM, Thompson MR, Venkatesan R. Magnetic Resonance Imaging: Physical Principles and Sequence Design. John Wiley & Sons, Hoboken, NJ; 2014.

Auteurs

Isaac Perez-Raya (I)

Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.

Mojtaba F Fathi (MF)

Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.

Ahmadreza Baghaie (A)

Department of Electrical and Computer Engineering, New York Institute of Technology, Long Island, New York, USA.

Raphael H Sacho (RH)

Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA.

Kevin M Koch (KM)

Department of Radiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA.

Roshan M D'Souza (RM)

Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH