Modelling climate change impacts on maize yields under low nitrogen input conditions in sub-Saharan Africa.

crop simulation model ensemble modelling model intercomparison smallholder farming systems uncertainty

Journal

Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746

Informations de publication

Date de publication:
Oct 2020
Historique:
received: 21 12 2019
revised: 19 05 2020
accepted: 22 06 2020
pubmed: 7 7 2020
medline: 30 1 2021
entrez: 7 7 2020
Statut: ppublish

Résumé

Smallholder farmers in sub-Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low-input systems is currently lacking. We evaluated the impact of varying [CO

Identifiants

pubmed: 32628332
doi: 10.1111/gcb.15261
doi:

Substances chimiques

Fertilizers 0
Nitrogen N762921K75

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5942-5964

Informations de copyright

© 2020 John Wiley & Sons Ltd.

Références

Affholder, F. (1995). Effect of organic matter input on the water balance and yield of millet under tropical dryland condition. Field Crops Research, 41, 109-121. https://doi.org/10.1016/0378-4290(94)00115-S
Affholder, F. (1997). Empirically modelling the interaction between intensification and climatic risk in semiarid regions. Field Crops Research, 52, 79-93. https://doi.org/10.1016/S0378-4290(96)03453-3
Allen, L. H., Kakani, V. G., Vu, J. C. V., & Boote, K. J. (2011). Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Journal of Plant Physiology, 168, 1909-1918. https://doi.org/10.1016/j.jplph.2011.05.005
Amouzou, K. A., Lamers, J. P. A., Naab, J. B., Borgemeister, C., Vlek, P. L. G., & Becker, M. (2019). Climate change impact on water- and nitrogen-use efficiencies and yields of maize and sorghum in the northern Benin dry savanna, West Africa. Field Crops Research, 235, 104-117. https://doi.org/10.1016/j.fcr.2019.02.021
Amouzou, K. A., Naab, J. B., Lamers, J. P. A., & Becker, M. (2018). CERES-Maize and CERES-Sorghum for modeling growth, nitrogen and phosphorus uptake, and soil moisture dynamics in the dry savanna of West Africa. Field Crops Research, 217, 134-149. https://doi.org/10.1016/j.fcr.2017.12.017
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., … Wolf, J. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3, 827-832. https://doi.org/10.1038/nclimate1916
Baron, C., Benjamin, S., Maud, B., Benoit, S., Seydou, T., Thierry, L., … Michael, D. (2005). From GCM grid cell to agricultural plot: Scale issues affecting modelling of climate impact. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 2095-2108. https://doi.org/10.1098/rstb.2005.1741
Basso, B., Cammarano, D., Troccoli, A., Chen, D., & Ritchie, J. T. (2010). Long-term wheat response to nitrogen in a rainfed Mediterranean environment: Field data and simulation analysis. European Journal of Agronomy, 33, 132-138. https://doi.org/10.1016/j.eja.2010.04.004
Bassu, S., Brisson, N., Durand, J.-L., Boote, K., Lizaso, J., Jones, J. W., … Waha, K. (2014). How do various maize crop models vary in their responses to climate change factors? Global Change Biology, 20, 2301-2320. https://doi.org/10.1111/gcb.12520
Bationo, A., Kihara, J., Vanlauwe, B., Waswa, B., & Kimetu, J. (2007). Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agricultural Systems, 94, 13-25. https://doi.org/10.1016/j.agsy.2005.08.011
Bielders, C. L., & Gérard, B. (2015). Millet response to microdose fertilization in south-western Niger: Effect of antecedent fertility management and environmental factors. Field Crops Research, 171, 165-175. https://doi.org/10.1016/j.fcr.2014.10.008
Biernath, C., Gayler, S., Bittner, S., Klein, C., Högy, P., Fangmeier, A., & Priesack, E. (2011). Evaluating the ability of four crop models to predict different environmental impacts on spring wheat grown in open-top chambers. European Journal of Agronomy, 35, 71-82. https://doi.org/10.1016/j.eja.2011.04.001
Brisson, N., Ruget, F., Gate, P., Lorgeou, J., Nicoullaud, B., Tayot, X., … Justes, E. (2002). STICS: A generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie, 22, 69-92. https://doi.org/10.1051/agro:2001005
Buerkert, A., Bationo, A., & Piepho, H.-P. (2001). Efficient phosphorus application strategies for increased crop production in sub-Saharan West Africa. Field Crops Research, 72, 1-15. https://doi.org/10.1016/S0378-4290(01)00166-6
Bunce, J. A. (2014). Corn growth response to elevated CO2 varies with the amount of nitrogen applied. American Journal of Plant Sciences, 5, 306-312. https://doi.org/10.4236/ajps.2014.53042
Castañeda-Vera, A., Leffelaar, P. A., Álvaro-Fuentes, J., Cantero-Martínez, C., & Mínguez, M. I. (2015). Selecting crop models for decision making in wheat insurance. European Journal of Agronomy, 68, 97-116. https://doi.org/10.1016/j.eja.2015.04.008
Challinor, A. J., Wheeler, T. R., Craufurd, P. Q., Slingo, J. M., & Grimes, D. I. F. (2004). Design and optimisation of a large-area process-based model for annual crops. Agricultural and Forest Meteorology, 124, 99-120. https://doi.org/10.1016/j.agrformet.2004.01.002
Chun, J. A., Wang, Q., Timlin, D., Fleisher, D., & Reddy, V. R. (2011). Effect of elevated carbon dioxide and water stress on gas exchange and water use efficiency in corn. Agricultural and Forest Meteorology, 151, 378-384. https://doi.org/10.1016/j.agrformet.2010.11.015
Confalonieri, R., Acutis, M., Bellocchi, G., & Donatelli, M. (2009). Multi-metric evaluation of the models WARM, CropSyst, and WOFOST for rice. Ecological Modelling, 220, 1395-1410. https://doi.org/10.1016/j.ecolmodel.2009.02.017
Confalonieri, R., Orlando, F., Paleari, L., Stella, T., Gilardelli, C., Movedi, E., … Acutis, M. (2016). Uncertainty in crop model predictions: What is the role of users? Environmental Modelling & Software, 81, 165-173. https://doi.org/10.1016/j.envsoft.2016.04.009
Connolly-Boutin, L., & Smit, B. (2016). Climate change, food security, and livelihoods in sub-Saharan Africa. Regional Environmental Change, 16, 385-399. https://doi.org/10.1007/s10113-015-0761-x
Conway, D., van Garderen, E. A., Deryng, D., Dorling, S., Krueger, T., Landman, W., … Dalin, C. (2015). Climate and southern Africa's water-energy-food nexus. Nature Climate Change, 5, 837-846. https://doi.org/10.1038/nclimate2735
Corbeels, M., Chirat, G., Messad, S., & Thierfelder, C. (2016). Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture. European Journal of Agronomy, 76, 41-53. https://doi.org/10.1016/j.eja.2016.02.001
Deryng, D., Conway, D., Ramankutty, N., Price, J., & Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters, 9, 034011. https://doi.org/10.1088/1748-9326/9/3/034011
Deryng, D., Sacks, W. J., Barford, C. C., & Ramankutty, N. (2011). Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles, 25. https://doi.org/10.1029/2009GB003765
Descheemaeker, K., Oosting, S. J., Tui, S.-H.-K., Masikati, P., Falconnier, G. N., & Giller, K. E. (2016). Climate change adaptation and mitigation in smallholder crop-livestock systems in sub-Saharan Africa: A call for integrated impact assessments. Regional Environmental Change, 16, 2331-2343. https://doi.org/10.1007/s10113-016-0957-8
Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361, 916-919. https://doi.org/10.1126/science.aat3466
Donatelli, M., Magarey, R. D., Bregaglio, S., Willocquet, L., Whish, J. P. M., & Savary, S. (2017). Modelling the impacts of pests and diseases on agricultural systems. Agricultural Systems, 155, 213-224. https://doi.org/10.1016/j.agsy.2017.01.019
Durand, J.-L., Delusca, K., Boote, K., Lizaso, J., Manderscheid, R., Weigel, H. J., … Zhao, Z. (2018). How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield? European Journal of Agronomy, 100, 67-75. https://doi.org/10.1016/j.eja.2017.01.002
Dzotsi, K. A., Jones, J. W., Adiku, S. G. K., Naab, J. B., Singh, U., Porter, C. H., & Gijsman, A. J. (2010). Modeling soil and plant phosphorus within DSSAT. Ecological Modelling, 221, 2839-2849. https://doi.org/10.1016/j.ecolmodel.2010.08.023
Falconnier, G. N., Descheemaeker, K., Van Mourik, T. A., Adam, M., Sogoba, B., & Giller, K. E. (2017). Co-learning cycles to support the design of innovative farm systems in southern Mali. European Journal of Agronomy, 89, 61-74. https://doi.org/10.1016/j.eja.2017.06.008
FAOSTAT. (2018). Food and Agriculture Organization of the United Nations, Rome, Italy. Retrieved from http://faostat.fao.org
Faye, B., Webber, H., Diop, M., Mbaye, M. L., Owusu-Sekyere, J. D., Naab, J. B., & Gaiser, T. (2018). Potential impact of climate change on peanut yield in Senegal, West Africa. Field Crops Research, 219, 148-159. https://doi.org/10.1016/j.fcr.2018.01.034
Faye, B., Webber, H., Naab, J. B., MacCarthy, D. S., Adam, M., Ewert, F., … Gaiser, T. (2018). Impacts of 1.5 versus 2.0°C on cereal yields in the West African Sudan Savanna. Environmental Research Letters, 13, 034014. https://doi.org/10.1088/1748-9326/aaab40
Fleisher, D. H., Condori, B., Quiroz, R., Alva, A., Asseng, S., Barreda, C., … Woli, P. (2017). A potato model intercomparison across varying climates and productivity levels. Global Change Biology, 23, 1258-1281. https://doi.org/10.1111/gcb.13411
Folberth, C., Yang, H., Gaiser, T., Abbaspour, K. C., & Schulin, R. (2013). Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa. Agricultural Systems, 119, 22-34. https://doi.org/10.1016/j.agsy.2013.04.002
Franke, J., Müller, C., Elliott, J., Ruane, A. C., Jagermeyr, J., Balkovic, J., … Moyer, E. (2020). The GGCMI Phase II experiment: Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0). Geoscientific Model Development Discussions, 1-30. https://doi.org/10.5194/gmd-2019-237
Freduah, B. S., MacCarthy, D. S., Adam, M., Ly, M., Ruane, A. C., Timpong-Jones, E. C., … Adiku, S. G. K. (2019). Sensitivity of maize yield in smallholder systems to climate scenarios in semi-arid regions of West Africa: Accounting for variability in farm management practices. Agronomy, 9, 639. https://doi.org/10.3390/agronomy9100639
Frelat, R., Lopez-Ridaura, S., Giller, K. E., Herrero, M., Douxchamps, S., Djurfeldt, A. A., … van Wijk, M. T. (2016). Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proceedings of the National Academy of Sciences of the United States of America, 113, 458-463. https://doi.org/10.1073/pnas.1518384112
Gaiser, T., Perkons, U., Küpper, P. M., Kautz, T., Uteau-Puschmann, D., Ewert, F., … Krauss, G. (2013). Modeling biopore effects on root growth and biomass production on soils with pronounced sub-soil clay accumulation. Ecological Modelling, 256, 6-15. https://doi.org/10.1016/j.ecolmodel.2013.02.016
Guan, K., Sultan, B., Biasutti, M., Baron, C., & Lobell, D. B. (2017). Assessing climate adaptation options and uncertainties for cereal systems in West Africa. Agricultural and Forest Meteorology, 232, 291-305. https://doi.org/10.1016/j.agrformet.2016.07.021
Guntiñas, M. E., Leirós, M. C., Trasar-Cepeda, C., & Gil-Sotres, F. (2012). Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. European Journal of Soil Biology, 48, 73-80. https://doi.org/10.1016/j.ejsobi.2011.07.015
Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., … Keating, B. A. (2014). APSIM - Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327-350. https://doi.org/10.1016/j.envsoft.2014.07.009
IPCC. (2013). Annex I: Atlas of global and regional climate projections. In G. J. van Oldenborgh, J. Collins, J. Arblaster, J. Christensen, J. Marotzke, S. B. Power, M. Rummukainen, & T. Zhou (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 1311-1393). Cambridge, UK and New York, NY: Cambridge University Press.
Jones, J. W., Naab, J., Fatondji, D., Dzotsi, K., Adiku, S., & He, J. (2012). Uncertainties in simulating crop performance in degraded soils and low input production systems. In J. M. Kihara, D. Fatondji, J. W. Jones, G. Hoogenboom, R. Tabo, & A. Bationo (Eds.), Improving soil fertility recommendations in Africa using the Decision Support System for Agrotechnology Transfer (DSSAT) (pp. 43-59). Dordrecht, the Netherlands: Springer. Retrieved from https://doi.org/10.1007/978-94-007-2960-5_4
Kamukondiwa, W., & Bergström, L. (1994). Nitrate leaching in field lysimeters at an agricultural site in Zimbabwe. Soil Use and Management, 10, 118-124. https://doi.org/10.1111/j.1475-2743.1994.tb00471.x
Kersebaum, K. C. (2011). Special features of the HERMES model and additional procedures for parameterization, calibration, validation, and applications. In L. R. Ahuja & L. Ma (Eds.), Methods of introducing system models into agricultural research (pp. 65-94). Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.
Kersebaum, K. C., Boote, K. J., Jorgenson, J. S., Nendel, C., Bindi, M., Frühauf, C., … Wegehenkel, M. (2015). Analysis and classification of data sets for calibration and validation of agro-ecosystem models. Environmental Modelling & Software, 72, 402-417. https://doi.org/10.1016/j.envsoft.2015.05.009
Kihara, J., Fatondji, D., Jones, J. W., Hoogenboom, G., Tabo, R., & Bationo, A. (Eds.). (2012). Improving soil fertility recommendations in Africa using the Decision Support System for Agrotechnology Transfer (DSSAT) (pp. 1-187). The Netherlands: Springer. https://doi.org/10.1007/978-94-007-2960-5
Kim, S.-H., Yang, Y., Timlin, D. J., Fleisher, D. H., Dathe, A., Reddy, V. R., & Staver, K. (2012). Modeling temperature responses of leaf growth, development, and biomass in maize with MAIZSIM. Agronomy Journal, 104, 1523-1537. https://doi.org/10.2134/agronj2011.0321
Knutti, R. (2010). The end of model democracy? Climatic Change, 102, 395-404. https://doi.org/10.1007/s10584-010-9800-2
Leakey, A. D. B., Uribelarrea, M., Ainsworth, E. A., Naidu, S. L., Rogers, A., Ort, D. R., & Long, S. P. (2006). Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology, 140, 779-790. https://doi.org/10.1104/pp.105.073957
Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Adam, M., … Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21, 1328-1341. https://doi.org/10.1111/gcb.12758
Lizaso, J. I., Boote, K. J., Jones, J. W., Porter, C. H., Echarte, L., Westgate, M. E., & Sonohat, G. (2011). CSM-IXIM: A new maize simulation model for DSSAT version 4.5. Agronomy Journal, 103, 766-779. https://doi.org/10.2134/agronj2010.0423
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319, 607-610. https://doi.org/10.1126/science.1152339
MacCarthy, D. S., Akponikpe, P. B. I., Narh, S., & Tegbe, R. (2015). Modeling the effect of seasonal climate variability on the efficiency of mineral fertilization on maize in the coastal savannah of Ghana. Nutrient Cycling in Agroecosystems, 102, 45-64. https://doi.org/10.1007/s10705-015-9701-x
Manderscheid, R., Erbs, M., & Weigel, H.-J. (2014). Interactive effects of free-air CO2 enrichment and drought stress on maize growth. European Journal of Agronomy, 52, 11-21. https://doi.org/10.1016/j.eja.2011.12.007
Mapanda, F., Wuta, M., Nyamangara, J., & Rees, R. M. (2012). Nitrogen leaching and indirect nitrous oxide emissions from fertilized croplands in Zimbabwe. Nutrient Cycling in Agroecosystems, 94, 85-96. https://doi.org/10.1007/s10705-012-9528-7
Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rötter, R. P., … Wolf, J. (2015). Multimodel ensembles of wheat growth: Many models are better than one. Global Change Biology, 21, 911-925. https://doi.org/10.1111/gcb.12768
Masvaya, E. N., Nyamangara, J., Descheemaeker, K., & Giller, K. E. (2017). Tillage, mulch and fertiliser impacts on soil nitrogen availability and maize production in semi-arid Zimbabwe. Soil and Tillage Research, 168, 125-132. https://doi.org/10.1016/j.still.2016.12.007
Ndoli, A., Baudron, F., Sida, T. S., Schut, A. G. T., van Heerwaarden, J., & Giller, K. E. (2018). Conservation agriculture with trees amplifies negative effects of reduced tillage on maize performance in East Africa. Field Crops Research, 221, 238-244. https://doi.org/10.1016/j.fcr.2018.03.003
Nendel, C., Berg, M., Kersebaum, K. C., Mirschel, W., Specka, X., Wegehenkel, M., … Wieland, R. (2011). The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecological Modelling, 222, 1614-1625. https://doi.org/10.1016/j.ecolmodel.2011.02.018
Nendel, C., Melzer, D., & Thorburn, P. J. (2019). The nitrogen nutrition potential of arable soils. Scientific Reports, 9, 1-9. https://doi.org/10.1038/s41598-019-42274-y
OCDE, & FAO. (2016). Agriculture in sub-Saharan Africa: Prospects and challenges for the next decade. In OECD-FAO Agricultural Outlook 2016-2025 (pp. 59-95). Paris, France: OECD publishing.
R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Ricome, A., Affholder, F., Gérard, F., Muller, B., Poeydebat, C., Quirion, P., & Sall, M. (2017). Are subsidies to weather-index insurance the best use of public funds? A bio-economic farm model applied to the Senegalese groundnut basin. Agricultural Systems, 156, 149-176. https://doi.org/10.1016/j.agsy.2017.05.015
Ritchie, J. T., Singh, U., Godwin, D. C., & Bowen, W. T. (1998). Cereal growth, development and yield. In G. Y. Tsuji, G. Hoogenboom, & P. K. Thornton (Eds.), Understanding options for agricultural production, systems approaches for sustainable agricultural development (pp. 79-98). Dordrecht, the Netherlands: Springer. Retrieved from https://doi.org/10.1007/978-94-017-3624-4_5
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., … Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111, 3268-3273. https://doi.org/10.1073/pnas.1222463110
Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., … Winter, J. M. (2013). The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 170, 166-182. https://doi.org/10.1016/j.agrformet.2012.09.011
Rötter, R., van Keulen, H., & Jansen, M. J. W. (1997). Variations in yield response to fertilizer application in the tropics: I. Quantifying risks and opportunities for smallholders based on crop growth simulation. Agricultural Systems, 53, 41-68. https://doi.org/10.1016/S0308-521X(96)00036-4
Ruane, A. C., Goldberg, R., & Chryssanthacopoulos, J. (2015). Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology, 200, 233-248. https://doi.org/10.1016/j.agrformet.2014.09.016
Ruane, A. C., Rosenzweig, C., Asseng, S., Boote, K. J., Elliott, J., Ewert, F., … Thorburn, P. J. (2017). An AgMIP framework for improved agricultural representation in integrated assessment models. Environmental Research Letters, 12, 125003. https://doi.org/10.1088/1748-9326/aa8da6
Rurinda, J., van Wijk, M. T., Mapfumo, P., Descheemaeker, K., Supit, I., & Giller, K. E. (2015). Climate change and maize yield in southern Africa: What can farm management do? Global Change Biology, 21, 4588-4601. https://doi.org/10.1111/gcb.13061
Russo, T. A., Tully, K., Palm, C., & Neill, C. (2017). Leaching losses from Kenyan maize cropland receiving different rates of nitrogen fertilizer. Nutrient Cycling in Agroecosystems, 108, 195-209. https://doi.org/10.1007/s10705-017-9852-z
Sadhukhan, D., Qi, Z., Zhang, T., Tan, C. S., Ma, L., & Andales, A. A. (2019). Development and evaluation of a phosphorus (P) module in RZWQM2 for phosphorus management in agricultural fields. Environmental Modelling & Software, 113, 48-58. https://doi.org/10.1016/j.envsoft.2018.12.007
Sida, T. S., Baudron, F., Hadgu, K., Derero, A., & Giller, K. E. (2018). Crop vs. tree: Can agronomic management reduce trade-offs in tree-crop interactions? Agriculture, Ecosystems & Environment, 260, 36-46. https://doi.org/10.1016/j.agee.2018.03.011
Smith, W., Grant, B., Qi, Z., He, W., VanderZaag, A., Drury, C. F., & Helmers, M. (2020). Development of the DNDC model to improve soil hydrology and incorporate mechanistic tile drainage: A comparative analysis with RZWQM2. Environmental Modelling & Software, 123, 104577. https://doi.org/10.1016/j.envsoft.2019.104577
Stitt, M., & Krapp, A. (1999). The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background. Plant, Cell and Environment, 22, 583-621. https://doi.org/10.1046/j.1365-3040.1999.00386.x
Sultan, B., & Gaetani, M. (2016). Agriculture in West Africa in the twenty-first century: Climate change and impacts scenarios, and potential for adaptation. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01262
Sultan, B., Guan, K., Kouressy, M., Biasutti, M., Piani, C., Hammer, G. L., … Lobell, D. B. (2014). Robust features of future climate change impacts on sorghum yields in West Africa. Environmental Research Letters, 9, 104006. https://doi.org/10.1088/1748-9326/9/10/104006
Tao, F., Palosuo, T., Rötter, R. P., Díaz-Ambrona, C. G. H., Inés Mínguez, M., Semenov, M. A., … Schulman, A. H. (2020). Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models. Agricultural and Forest Meteorology, 281, 107851. https://doi.org/10.1016/j.agrformet.2019.107851
Tao, F., Rötter, R. P., Palosuo, T., Díaz-Ambrona, C. G. H., Mínguez, M. I., Semenov, M. A., … Schulman, A. H. (2018). Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Global Change Biology, 24, 1291-1307. https://doi.org/10.1111/gcb.14019
Tao, F., & Zhang, Z. (2010). Adaptation of maize production to climate change in North China Plain: Quantify the relative contributions of adaptation options. European Journal of Agronomy, 33, 103-116. https://doi.org/10.1016/j.eja.2010.04.002
Taylor, C. M., Belušić, D., Guichard, F., Parker, D. J., Vischel, T., Bock, O., … Panthou, G. (2017). Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature, 544, 475-478. https://doi.org/10.1038/nature22069
Taylor, S. L., Payton, M. E., & Raun, W. R. (1999). Relationship between mean yield, coefficient of variation, mean square error, and plot size in wheat field experiments. Communications in Soil Science and Plant Analysis, 30, 1439-1447. https://doi.org/10.1080/00103629909370298
ten Berge, H. F. M., Hijbeek, R., van Loon, M. P., Rurinda, J., Tesfaye, K., Zingore, S., … van Ittersum, M. K. (2019). Maize crop nutrient input requirements for food security in sub-Saharan Africa. Global Food Security, 23, 9-21. https://doi.org/10.1016/j.gfs.2019.02.001
Traore, B., Descheemaeker, K., van Wijk, M. T., Corbeels, M., Supit, I., & Giller, K. E. (2017). Modelling cereal crops to assess future climate risk for family food self-sufficiency in southern Mali. Field Crops Research, 201, 133-145. https://doi.org/10.1016/j.fcr.2016.11.002
Traore, B., van Wijk, M. T., Descheemaeker, K., Corbeels, M., Rufino, M. C., & Giller, K. E. (2014). Evaluation of climate adaptation options for Sudano-Sahelian cropping systems. Field Crops Research, 156, 63-75. https://doi.org/10.1016/j.fcr.2013.10.014
Twine, T. E., Bryant, J. J., Richter, K. T., Bernacchi, C. J., McConnaughay, K. D., Morris, S. J., & Leakey, A. D. B. (2013). Impacts of elevated CO2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest USA. Global Change Biology, 19, 2838-2852. https://doi.org/10.1111/gcb.12270
van der Laan, M., Stirzaker, R. J., Annandale, J. G., Bristow, K. L., & du Preez, C. C. (2010). Monitoring and modelling draining and resident soil water nitrate concentrations to estimate leaching losses. Agricultural Water Management, 97, 1779-1786. https://doi.org/10.1016/j.agwat.2010.06.012
van der Velde, M., Folberth, C., Balkovič, J., Ciais, P., Fritz, S., Janssens, I. A., … Peñuelas, J. (2014). African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption. Global Change Biology, 20, 1278-1288. https://doi.org/10.1111/gcb.12481
van Loon, M. P., Hijbeek, R., ten Berge, H. F. M., Sy, V. D., ten Broeke, G. A., Solomon, D., & van Ittersum, M. K. (2019). Impacts of intensifying or expanding cereal cropping in sub-Saharan Africa on greenhouse gas emissions and food security. Global Change Biology, 25, 3720-3730. https://doi.org/10.1111/gcb.14783
Vanlauwe, B., Coyne, D., Gockowski, J., Hauser, S., Huising, J., Masso, C., … Van Asten, P. (2014). Sustainable intensification and the African smallholder farmer. Current Opinion in Environmental Sustainability, 8, 15-23. https://doi.org/10.1016/j.cosust.2014.06.001
Waha, K., Müller, C., & Rolinski, S. (2013). Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to late-21st century. Global and Planetary Change, 106, 1-12. https://doi.org/10.1016/j.gloplacha.2013.02.009
Wallach, D., Martre, P., Liu, B., Asseng, S., Ewert, F., Thorburn, P. J., … Zhang, Z. (2018). Multimodel ensembles improve predictions of crop-environment-management interactions. Global Change Biology, 24, 5072-5083. https://doi.org/10.1111/gcb.14411
Whitbread, A. M., Hoffmann, M. P., Davoren, C. W., Mowat, D., & Baldock, J. A. (2017). Measuring and modeling the water balance in low-rainfall cropping systems. Transactions of the ASABE, 60, 2097-2110. https://doi.org/10.13031/trans.12581
Wood, S. A., Tirfessa, D., & Baudron, F. (2018). Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agriculture, Ecosystems & Environment, 266, 100-108. https://doi.org/10.1016/j.agee.2018.07.025
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., … Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114, 9326-9331. https://doi.org/10.1073/pnas.1701762114
Ziska, L. H., Sicher, R. C., & Bunce, J. A. (1999). The impact of elevated carbon dioxide on the growth and gas exchange of three C4 species differing in CO2 leak rates. Physiologia Plantarum, 105, 74-80. https://doi.org/10.1034/j.1399-3054.1999.105112.x
Ziska, L. H., Weerakoon, W., Namuco, O. S., & Pamplona, R. (1996). The influence of nitrogen on the elevated CO2 response in field-grown rice. Functional Plant Biology, 23, 45-52. https://doi.org/10.1071/pp9960045

Auteurs

Gatien N Falconnier (GN)

AIDA, Univ Montpellier, CIRAD, Montpellier, France.

Marc Corbeels (M)

AIDA, Univ Montpellier, CIRAD, Montpellier, France.
CIMMYT, Nairobi, Kenya.

Kenneth J Boote (KJ)

University of Florida, Gainesville, FL, USA.

François Affholder (F)

AIDA, Univ Montpellier, CIRAD, Montpellier, France.

Myriam Adam (M)

CIRAD, UMR AGAP, Bobo-Dioulasso, Burkina Faso.
AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.

Dilys S MacCarthy (DS)

Soil and Irrigation Research Centre, School of Agriculture, College of Basic and Applied Science, University of Ghana, Accra, Ghana.

Alex C Ruane (AC)

Climate Impacts Group, National Aeronautics and Space Administration Goddard Institute for Space Studies, New York, NY, USA.

Claas Nendel (C)

Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany.

Anthony M Whitbread (AM)

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Dar es Salaam, Tanzania.

Éric Justes (É)

PERSYST, Univ Montpellier, CIRAD, Montpellier, France.

Lajpat R Ahuja (LR)

USDA-ARS, Fort Collins, CO, USA.

Folorunso M Akinseye (FM)

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Kano, Nigeria.

Isaac N Alou (IN)

Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa.

Kokou A Amouzou (KA)

West Africa Program, African Plant Nutrition Institute (APNI), Yamoussoukro, Cote d'Ivoire.

Saseendran S Anapalli (SS)

Sustainable Water Management Research Unit, USDA-ARS, Stoneville, MS, USA.

Christian Baron (C)

CIRAD, UMR TETIS, Montpellier, France.
TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, IRSTEA, Montpellier, France.

Bruno Basso (B)

Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA.

Patrick Bertuzzi (P)

INRA, Agroclim, France.

Andrew J Challinor (AJ)

Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK.

Yi Chen (Y)

Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.

Delphine Deryng (D)

Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, Germany.
NewClimate Institute, Berlin, Germany.

Maha L Elsayed (ML)

MALR-ARC, Central Laboratory for Agricultural Climate (CLAC), Giza, Egypt.

Babacar Faye (B)

Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.

Thomas Gaiser (T)

Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.

Marcelo Galdos (M)

Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK.

Sebastian Gayler (S)

Institute of Soil Science and Land Evaluation, Biogeophysics, University of Hohenheim, Stuttgart, Germany.

Edward Gerardeaux (E)

AIDA, Univ Montpellier, CIRAD, Montpellier, France.

Michel Giner (M)

AIDA, Univ Montpellier, CIRAD, Montpellier, France.

Brian Grant (B)

Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada.

Gerrit Hoogenboom (G)

University of Florida, Gainesville, FL, USA.

Esther S Ibrahim (ES)

Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany.

Bahareh Kamali (B)

Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany.

Kurt Christian Kersebaum (KC)

Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany.

Soo-Hyung Kim (SH)

School of Environmental and Forest Sciences, University of Washington, Seattle, USA.

Michael van der Laan (M)

Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa.

Louise Leroux (L)

AIDA, Univ Montpellier, CIRAD, Montpellier, France.
CIRAD, UPR AIDA, Dakar, Senegal.

Jon I Lizaso (JI)

CEIGRAM-Universidad Politécnica de Madrid, ETSIAAB, Madrid, Spain.

Bernardo Maestrini (B)

Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA.

Elizabeth A Meier (EA)

CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, Australia.

Fasil Mequanint (F)

Institute of Soil Science and Land Evaluation, Biogeophysics, University of Hohenheim, Stuttgart, Germany.

Alain Ndoli (A)

CIMMYT, Harare, Zimbabwe.

Cheryl H Porter (CH)

University of Florida, Gainesville, FL, USA.

Eckart Priesack (E)

Institute of Biochemical Plant Pathology, Helmholtz Center Munich, Neuherberg, Germany.

Tesfaye S Sida (TS)

CIMMYT, Addis Ababa, Ethiopia.

Upendra Singh (U)

International Center for Soil Fertility and Agricultural Development, Muscle Shoals, AL, USA.

Ward N Smith (WN)

Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada.

Amit Srivastava (A)

Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.

Sumit Sinha (S)

Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK.

Fulu Tao (F)

Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
Natural Resources Institute Finland (Luke), Helsinki, Finland.

Peter J Thorburn (PJ)

CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, Australia.

Dennis Timlin (D)

Crop Systems and Global Change Research Unit, USDA-ARS, Beltsville, MD, USA.

Tracy Twine (T)

Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USA.

Heidi Webber (H)

Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany.

Articles similaires

Humans Climate Change Health Personnel Surveys and Questionnaires Medical Oncology
Zea mays Triticum China Seasons Crops, Agricultural
Humans Female Pregnancy Adult Cameroon
Climate Change Social Media Humans Communication Canada

Classifications MeSH