Nicotinamide Phosphoribosyltransferase (Nampt)/Nicotinamide Adenine Dinucleotide (NAD) Axis Suppresses Atrial Fibrillation by Modulating the Calcium Handling Pathway.
Animals
Atrial Fibrillation
/ enzymology
Calcium
/ metabolism
Calcium-Calmodulin-Dependent Protein Kinase Type 2
/ metabolism
Diet, High-Fat
/ adverse effects
Heart Atria
/ enzymology
Male
Mice, Knockout
NAD
/ metabolism
Nicotinamide Phosphoribosyltransferase
/ metabolism
Obesity
/ complications
Ryanodine Receptor Calcium Release Channel
/ metabolism
AF
CaMKII
NAD
Nampt
ROS
RyR2
Sirt1
calcium handling
cardiac myocytes
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
30 Jun 2020
30 Jun 2020
Historique:
received:
21
05
2020
revised:
18
06
2020
accepted:
28
06
2020
entrez:
8
7
2020
pubmed:
8
7
2020
medline:
23
2
2021
Statut:
epublish
Résumé
Aging and obesity are the most prominent risk factors for onset of atrial fibrillation (AF). Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme that catalyzes nicotinamide adenine dinucleotide (NAD) activity. Nampt and NAD are essential for maintenance of cellular redox homeostasis and modulation of cellular metabolism, and their expression levels decrease with aging and obesity. However, a role for Nampt in AF is unknown. The present study aims to test whether there is a role of Nampt/NAD axis in the pathogenesis of obesity-induced AF. Male C57BL/6J (WT) mice and heterozygous Nampt knockout (NKO) mice were fed with a normal chow diet (ND) or a high-fat diet (HFD). Electrophysiological study showed that AF inducibility was significantly increased in WT+HFD, NKO+ND, and NKO+HFD mice compared with WT+ND mice. AF duration was significantly longer in WT+HFD and NKO+ND mice and further prolonged in NKO+HFD mice compared with WT+ND mice and the calcium handling pathway was altered on molecular level. Also, treatment with nicotinamide riboside, a NAD precursor, partially restored the HFD-induced AF perpetuation. Overall, this work demonstrates that partially deletion of Nampt facilitated HFD-induced AF through increased diastolic calcium leaks. The Nampt/NAD axis may be a potent therapeutic target for AF.
Identifiants
pubmed: 32629939
pii: ijms21134655
doi: 10.3390/ijms21134655
pmc: PMC7370160
pii:
doi:
Substances chimiques
Ryanodine Receptor Calcium Release Channel
0
NAD
0U46U6E8UK
Nicotinamide Phosphoribosyltransferase
EC 2.4.2.12
Calcium-Calmodulin-Dependent Protein Kinase Type 2
EC 2.7.11.17
Calcium
SY7Q814VUP
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Japan Society for the Promotion of Science
ID : 15KK0330
Organisme : Japan Society for the Promotion of Science
ID : 15K19366
Commentaires et corrections
Type : ErratumIn
Références
Lancet. 1988 Aug 20;2(8608):448
pubmed: 2900371
Mol Metab. 2017 May 29;6(8):819-832
pubmed: 28752046
Circulation. 2005 Aug 30;112(9):1266-73
pubmed: 16129811
Circulation. 1998 Sep 8;98(10):946-52
pubmed: 9737513
Acta Physiol (Oxf). 2020 Apr;228(4):e13437
pubmed: 31900990
Am J Physiol Heart Circ Physiol. 2019 Oct 1;317(4):H711-H725
pubmed: 31347918
J Am Coll Cardiol. 2014 Jun 10;63(22):2335-45
pubmed: 24613319
Stroke. 1991 Aug;22(8):983-8
pubmed: 1866765
Cell Signal. 2013 Oct;25(10):1939-48
pubmed: 23770291
PLoS One. 2012;7(5):e37026
pubmed: 22615880
Oncogene. 2016 Jul 7;35(27):3544-54
pubmed: 26568303
Circ J. 2015;79(3):495-502
pubmed: 25746525
Cardiovasc Diabetol. 2017 Sep 29;16(1):120
pubmed: 28962617
Br J Pharmacol. 2016 Aug;173(15):2352-68
pubmed: 27174364
Cell Signal. 2020 Feb;66:109496
pubmed: 31816398
Clin Chem. 2009 Apr;55(4):611-22
pubmed: 19246619
Sci Rep. 2016 May 27;6:26933
pubmed: 27230286
Physiol Rep. 2019 Feb;7(4):e13972
pubmed: 30806037
Nature. 2014 Nov 20;515(7527):431-435
pubmed: 25383517
Cell Stress Chaperones. 2020 Jan;25(1):163-172
pubmed: 31898286
JAMA. 1994 Mar 16;271(11):840-4
pubmed: 8114238
Am J Respir Crit Care Med. 2008 Sep 15;178(6):605-17
pubmed: 18658108
Cell Rep. 2016 Aug 16;16(7):1851-60
pubmed: 27498863
Mediators Inflamm. 2015;2015:392471
pubmed: 25814788
Front Physiol. 2019 Sep 03;10:1125
pubmed: 31551807
Circulation. 2013 Oct 15;128(16):1748-57
pubmed: 24030498
Biophys J. 1999 Feb;76(2):606-17
pubmed: 9929467
J Cardiovasc Electrophysiol. 2010 Jan;21(1):88-93
pubmed: 19817931
J Cardiovasc Electrophysiol. 2012 Feb;23(2):209-17
pubmed: 21954843
JAMA. 2004 Nov 24;292(20):2471-7
pubmed: 15562125
Trends Cell Biol. 2014 Aug;24(8):464-71
pubmed: 24786309
Mol Metab. 2018 May;11:178-188
pubmed: 29551635
Circulation. 2003 Jun 17;107(23):2920-5
pubmed: 12771006
Circulation. 2018 May 22;137(21):2256-2273
pubmed: 29217642
PLoS One. 2017 Dec 12;12(12):e0189330
pubmed: 29232411
Cell Metab. 2007 Nov;6(5):363-75
pubmed: 17983582
PLoS One. 2014 Jun 06;9(6):e98972
pubmed: 24905194
Hepatology. 2017 Feb;65(2):616-630
pubmed: 27809334
J Mol Cell Cardiol. 2014 Aug;73:112-6
pubmed: 24530899
Cell Metab. 2012 Jun 6;15(6):838-47
pubmed: 22682224
Circulation. 2014 Feb 25;129(8):837-47
pubmed: 24345399
Exp Cell Res. 2018 Dec 15;373(1-2):112-118
pubmed: 30359575
Clin Cancer Res. 2016 Nov 1;22(21):5189-5195
pubmed: 27582489
Circ Res. 2010 Apr 2;106(6):1134-44
pubmed: 20056922
FASEB J. 2019 Mar;33(3):3704-3717
pubmed: 30514106
Nature. 2019 May;569(7757):570-575
pubmed: 31019297
Circ Res. 2016 Sep 30;119(8):909-20
pubmed: 27502479
Circ Res. 2009 Aug 28;105(5):481-91
pubmed: 19661458
Biochem Biophys Res Commun. 2017 Nov 4;493(1):77-84
pubmed: 28919418
Circ Res. 2005 Sep 30;97(7):629-36
pubmed: 16123335
Front Physiol. 2018 Oct 22;9:1482
pubmed: 30405438
Cell Metab. 2011 Oct 5;14(4):528-36
pubmed: 21982712