Curcumin Containing PEGylated Solid Lipid Nanoparticles for Systemic Administration: A Preliminary Study.
Anti-Inflammatory Agents, Non-Steroidal
/ administration & dosage
Antioxidants
/ administration & dosage
Cell Proliferation
Cells, Cultured
Curcumin
/ administration & dosage
Dental Pulp
/ cytology
Drug Carriers
/ chemistry
Humans
Lipids
/ chemistry
Nanoparticles
/ chemistry
Polyethylene Glycols
/ chemistry
Stem Cells
/ cytology
ORAC
PEGylation
SLN
TEM
Turbiscan
cryoprotector
curcumin
stealth system
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
30 Jun 2020
30 Jun 2020
Historique:
received:
20
05
2020
revised:
24
06
2020
accepted:
28
06
2020
entrez:
8
7
2020
pubmed:
8
7
2020
medline:
27
3
2021
Statut:
epublish
Résumé
Curcumin (CUR) has a wide range of pharmacological properties, including anti-inflammatory and antioxidant activities, and it can be considered a good candidate for the potential treatment of central nervous system (CNS) pathologies, although its use in clinical practice is compromised due to its high lipophilicity. Solid lipid nanoparticles (SLNs) are well-known nanocarriers representing a consolidated approach for the delivery of lipophilic compounds, but their systemic use is limited due their short half-life. The formulation of stealth SLNs (pSLNs) could be a valid strategy to overcome this limit. Curcumin-loaded-pSLNs were prepared by the solvent evaporation method. Formulation was characterized for their mean size, zeta potential, size distribution, and morphology. Drug antioxidant activity was evaluated by Oxygen Radical Absorbance Capacity (ORAC) assay. Finally, the obtained formulations were analyzed in terms of long-term stability. Curcumin-loaded-pSLNs showed good technological parameters with a mean particle size below 200 nm, as confirmed by TEM images, and a zeta potential value around -30 mV, predicting good long-term stability. Differential Scanning Calorimetry (DSC) analysis confirmed that PEG micelles interacted with the SLN surface; this suggests the location of the PEG on the pSLN surface. Therefore, these preliminary studies suggest that the produced formulation could be regarded as a promising carrier for the systemic administration.
Identifiants
pubmed: 32629951
pii: molecules25132991
doi: 10.3390/molecules25132991
pmc: PMC7411787
pii:
doi:
Substances chimiques
Anti-Inflammatory Agents, Non-Steroidal
0
Antioxidants
0
Drug Carriers
0
Lipids
0
Polyethylene Glycols
3WJQ0SDW1A
Curcumin
IT942ZTH98
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Free Radic Biol Med. 1993 Mar;14(3):303-11
pubmed: 8458588
Nanomaterials (Basel). 2020 May 08;10(5):
pubmed: 32397093
J Agric Food Chem. 2001 Oct;49(10):4619-26
pubmed: 11599998
J Biomed Mater Res A. 2009 Oct;91(1):263-76
pubmed: 18980197
Int J Biochem Cell Biol. 2009 Jan;41(1):40-59
pubmed: 18662800
Food Funct. 2015 Nov;6(11):3412-9
pubmed: 26404185
Int J Pharm. 1997 Nov 28;157(2):171-179
pubmed: 10477814
Colloids Surf B Biointerfaces. 2015 Jan 1;125:190-6
pubmed: 25497291
J Biochem Mol Toxicol. 2020 Jun;34(6):e22478
pubmed: 32124518
Nanomaterials (Basel). 2020 Feb 08;10(2):
pubmed: 32046269
Medicines (Basel). 2018 Nov 23;5(4):
pubmed: 30477087
Adv Drug Deliv Rev. 2006 Dec 30;58(15):1688-713
pubmed: 17118485
J Pharm Sci. 2007 Feb;96(2):397-407
pubmed: 17075865
J Agric Food Chem. 2003 Nov 5;51(23):6657-62
pubmed: 14582956
Cell Tissue Res. 2020 Mar;379(3):421-428
pubmed: 31776822
Sci Rep. 2017 Jul 26;7(1):6513
pubmed: 28747775
Drug Deliv. 2016;23(1):36-40
pubmed: 24735249
Immunol Today. 1991 Sep;12(9):322-6
pubmed: 1755943
Life Sci. 2006 Mar 27;78(18):2081-7
pubmed: 16413584
Int J Pharm. 2001 Jun 19;221(1-2):143-52
pubmed: 11397575
Planta Med. 2019 Feb;85(3):258-265
pubmed: 30206907
AAPS PharmSciTech. 2010 Sep;11(3):1206-11
pubmed: 20680708
Cell Mol Life Sci. 2008 Jun;65(11):1631-52
pubmed: 18324353
Eur J Pharm Biopharm. 1999 Mar;47(2):125-32
pubmed: 10234536
Br J Nutr. 2005 Feb;93(2):257-66
pubmed: 15788119
Food Res Int. 2020 Jun;132:109035
pubmed: 32331634
Curr Drug Targets. 2013 Aug;14(9):1053-60
pubmed: 23651164
Mol Pharm. 2007 Nov-Dec;4(6):807-18
pubmed: 17999464
Int J Nanomedicine. 2013;8:933-40
pubmed: 23486407
Drug Res (Stuttg). 2018 Mar;68(3):132-138
pubmed: 29108086
Adv Drug Deliv Rev. 2004 May 7;56(9):1257-72
pubmed: 15109768
Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13625-30
pubmed: 11087820
Adv Drug Deliv Rev. 1995 Sep;16(2-3):215-233
pubmed: 25170183
Adv Healthc Mater. 2012 Sep;1(5):600-8
pubmed: 23184795
ACS Nano. 2009 Jan 27;3(1):16-20
pubmed: 19206243
Mater Sci Eng C Mater Biol Appl. 2013 Dec 1;33(8):4923-34
pubmed: 24094206
Molecules. 2019 Aug 22;24(17):
pubmed: 31443533
Front Neurosci. 2020 May 07;14:407
pubmed: 32457568
Adv Drug Deliv Rev. 2001 Apr 25;47(2-3):165-96
pubmed: 11311991
Colloids Surf B Biointerfaces. 2017 Jul 1;155:266-275
pubmed: 28460301
Int J Pharm. 2012 Mar 15;424(1-2):98-106
pubmed: 22226876
Colloids Surf B Biointerfaces. 2020 Feb;186:110705
pubmed: 31830707
Langmuir. 2009 Jul 7;25(13):7279-86
pubmed: 19358585
Science. 1994 Mar 18;263(5153):1600-3
pubmed: 8128245
Int J Pharm. 2016 Mar 30;501(1-2):180-9
pubmed: 26853316
Pharm Res. 2017 Feb;34(2):492-505
pubmed: 27995523
Pharm Res. 1992 Feb;9(2):200-5
pubmed: 1553342
J Agric Food Chem. 2005 May 18;53(10):4290-302
pubmed: 15884874
Colloids Surf B Biointerfaces. 2014 Sep 1;121:1-10
pubmed: 24929522
Int J Mol Sci. 2020 Mar 26;21(7):
pubmed: 32225104
Carbohydr Polym. 2017 Feb 10;157:1853-1861
pubmed: 27987905