T cell antigen discovery.


Journal

Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604

Informations de publication

Date de publication:
08 2021
Historique:
received: 18 12 2019
accepted: 18 05 2020
pubmed: 8 7 2020
medline: 21 9 2021
entrez: 8 7 2020
Statut: ppublish

Résumé

T cells respond to threats in an antigen-specific manner using T cell receptors (TCRs) that recognize short peptide antigens presented on major histocompatibility complex (MHC) proteins. The TCR-peptide-MHC interaction mediated between a T cell and its target cell dictates its function and thereby influences its role in disease. A lack of approaches for antigen discovery has limited the fundamental understanding of the antigenic landscape of the overall T cell response. Recent advances in high-throughput sequencing, mass cytometry, microfluidics and computational biology have led to a surge in approaches to address the challenge of T cell antigen discovery. Here, we summarize the scope of this challenge, discuss in depth the recent exciting work and highlight the outstanding questions and remaining technical hurdles in this field.

Identifiants

pubmed: 32632239
doi: 10.1038/s41592-020-0867-z
pii: 10.1038/s41592-020-0867-z
doi:

Substances chimiques

Antigens 0
Receptors, Antigen, T-Cell 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

873-880

Informations de copyright

© 2020. Springer Nature America, Inc.

Références

Davis, M. M. & Bjorkman, P. J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).
pubmed: 3043226 doi: 10.1038/334395a0
La Gruta, N. L., Gras, S., Daley, S. R., Thomas, P. G. & Rossjohn, J. Understanding the drivers of MHC restriction of T cell receptors. Nat. Rev. Immunol. 18, 467–478 (2018).
pubmed: 29636542 doi: 10.1038/s41577-018-0007-5
Robins, H. S. et al. Overlap and effective size of the human CD8
Paucek, R. D., Baltimore, D. & Li, G. The cellular immunotherapy revolution: arming the immune system for precision therapy. Trends Immunol. 40, 292–309 (2019).
pubmed: 30871979 doi: 10.1016/j.it.2019.02.002
Germain, R. N. T-cell development and the CD4-CD8 lineage decision. Nat. Rev. Immunol. 2, 309–322 (2002).
pubmed: 12033737 doi: 10.1038/nri798
Godfrey, D. I., Le Nours, J., Andrews, D. M., Uldrich, A. P. & Rossjohn, J. Unconventional T cell targets for cancer immunotherapy. Immunity 48, 453–473 (2018).
pubmed: 29562195 doi: 10.1016/j.immuni.2018.03.009
Rock, K. L., Reits, E. & Neefjes, J. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol. 37, 724–737 (2016).
pubmed: 27614798 pmcid: 5159193 doi: 10.1016/j.it.2016.08.010
Neefjes, J., Jongsma, M. L., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836 (2011).
pubmed: 22076556 doi: 10.1038/nri3084
Reinherz, E. L. & Wang, J. H. Codification of bidentate pMHC interaction with TCR and its co-receptor. Trends Immunol. 36, 300–306 (2015).
pubmed: 25818864 pmcid: 4420642 doi: 10.1016/j.it.2015.03.004
Sewell, A. K. Why must T cells be cross-reactive? Nat. Rev. Immunol. 12, 669–677 (2012).
pubmed: 22918468 pmcid: 7097784 doi: 10.1038/nri3279
Nikolich-Zugich, J., Slifka, M. K. & Messaoudi, I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 4, 123–132 (2004).
pubmed: 15040585 doi: 10.1038/nri1292
Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).
pubmed: 9745202 doi: 10.1016/S0167-5699(98)01299-7
Hondowicz, B. D. et al. Discovery of T cell antigens by high-throughput screening of synthetic minigene libraries. PLoS One 7, e29949 (2012).
pubmed: 22253836 pmcid: 3257230 doi: 10.1371/journal.pone.0029949
Wooldridge, L. et al. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 287, 1168–1177 (2012).
pubmed: 22102287 doi: 10.1074/jbc.M111.289488
Wucherpfennig, K. W. et al. Polyspecificity of T cell and B cell receptor recognition. Semin. Immunol. 19, 216–224 (2007).
pubmed: 17398114 pmcid: 2034306 doi: 10.1016/j.smim.2007.02.012
Holler, P. D. et al. In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc. Natl Acad. Sci. USA 97, 5387–5392 (2000).
pubmed: 10779548 pmcid: 25838 doi: 10.1073/pnas.080078297
Frankiw, L., Baltimore, D. & Li, G. Alternative mRNA splicing in cancer immunotherapy. Nat. Rev. Immunol. 19, 675–687 (2019).
pubmed: 31363190 doi: 10.1038/s41577-019-0195-7
Jurtz, V. et al. NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol. 199, 3360–3368 (2017).
pubmed: 28978689 doi: 10.4049/jimmunol.1700893
Bassani-Sternberg, M. et al. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLOS Comput. Biol. 13, e1005725 (2017).
pubmed: 28832583 pmcid: 5584980 doi: 10.1371/journal.pcbi.1005725
Kawakami, Y. et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc. Natl Acad. Sci. USA 91, 3515–3519 (1994). This study, along with that of van der Bruggen et al.
pubmed: 8170938 pmcid: 43610 doi: 10.1073/pnas.91.9.3515
van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991).
pubmed: 1840703 doi: 10.1126/science.1840703
Sahin, U. et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl Acad. Sci. USA 92, 11810–11813 (1995).
pubmed: 8524854 pmcid: 40492 doi: 10.1073/pnas.92.25.11810
Bethune, M. T. et al. Isolation and characterization of NY-ESO-1-specific T cell receptors restricted on various MHC molecules. Proc. Natl Acad. Sci. USA 115, E10702–E10711 (2018).
pubmed: 30348802 pmcid: 6233129 doi: 10.1073/pnas.1810653115
Robbins, P. F. et al. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J. Exp. Med. 183, 1185–1192 (1996).
pubmed: 8642260 doi: 10.1084/jem.183.3.1185
Wong, F. S. et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat. Med. 5, 1026–1031 (1999).
pubmed: 10470079 doi: 10.1038/12465
McCutcheon, M. et al. A sensitive ELISPOT assay to detect low-frequency human T lymphocytes. J. Immunol. Methods 210, 149–166 (1997).
pubmed: 9520298 doi: 10.1016/S0022-1759(97)00182-8
Ogunshola, F. et al. Dual HLA B*42 and B*81-reactive T cell receptors recognize more diverse HIV-1 Gag escape variants. Nat. Commun. 9, 5023 (2018).
pubmed: 30479346 pmcid: 6258674 doi: 10.1038/s41467-018-07209-7
Koh, S. et al. A practical approach to immunotherapy of hepatocellular carcinoma using T cells redirected against hepatitis B virus. Mol. Ther. Nucleic Acids 2, e114 (2013).
pubmed: 23941866 pmcid: 3759740 doi: 10.1038/mtna.2013.43
Joglekar, A. V. et al. T cell receptors for the HIV KK10 epitope from patients with differential immunologic control are functionally indistinguishable. Proc. Natl Acad. Sci. USA 115, 1877–1882 (2018).
pubmed: 29437954 pmcid: 5828616 doi: 10.1073/pnas.1718659115
Bertoletti, A. et al. Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. J. Exp. Med. 180, 933–943 (1994).
pubmed: 7520476 doi: 10.1084/jem.180.3.933
Mottez, E. et al. A single-chain murine class I major transplantation antigen. Eur. J. Immunol. 21, 467–471 (1991).
pubmed: 1999227 doi: 10.1002/eji.1830210232
Uger, R. A., Barber, B. H. & Creating, C. T. L. targets with epitope-linked beta 2-microglobulin constructs. J. Immunol. 160, 1598–1605 (1998).
pubmed: 9469415
Yu, Y. Y., Netuschil, N., Lybarger, L., Connolly, J. M. & Hansen, T. H. Cutting edge: single-chain trimers of MHC class I molecules form stable structures that potently stimulate antigen-specific T cells and B cells. J. Immunol. 168, 3145–3149 (2002).
pubmed: 11907065 doi: 10.4049/jimmunol.168.7.3145
Kim, S. et al. Single-chain HLA-A2 MHC trimers that incorporate an immunodominant peptide elicit protective T cell immunity against lethal West Nile virus infection. J. Immunol. 184, 4423–4430 (2010).
pubmed: 20212098 doi: 10.4049/jimmunol.0903955
Linnemann, C. et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4
pubmed: 25531942 doi: 10.1038/nm.3773
Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996). This study described the use of pMHC tetramers for identification and characterization of antigen-specific T lymphocytes.
pubmed: 8810254 doi: 10.1126/science.274.5284.94
Dolton, G. et al. More tricks with tetramers: a practical guide to staining T cells with peptide-MHC multimers. Immunology 146, 11–22 (2015).
pubmed: 26076649 pmcid: 4552497 doi: 10.1111/imm.12499
Klenerman, P., Cerundolo, V. & Dunbar, P. R. Tracking T cells with tetramers: new tales from new tools. Nat. Rev. Immunol. 2, 263–272 (2002).
pubmed: 12001997 doi: 10.1038/nri777
Wooldridge, L. et al. Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology 126, 147–164 (2009).
pubmed: 19125886 pmcid: 2632693 doi: 10.1111/j.1365-2567.2008.02848.x
Chen, H. et al. TCR clonotypes modulate the protective effect of HLA class I molecules in HIV-1 infection. Nat. Immunol. 13, 691–700 (2012).
pubmed: 22683743 pmcid: 3538851 doi: 10.1038/ni.2342
Yang, J. D. et al. Mycobacterium tuberculosis-specific CD4
pubmed: 29782535 pmcid: 6013218 doi: 10.1371/journal.ppat.1007060
Toebes, M. et al. Design and use of conditional MHC class I ligands. Nat. Med. 12, 246–251 (2006).
pubmed: 16462803 doi: 10.1038/nm1360
Bakker, A. H. et al. Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Proc. Natl Acad. Sci. USA 105, 3825–3830 (2008).
pubmed: 18308940 pmcid: 2268811 doi: 10.1073/pnas.0709717105
Saini, S. K. et al. Dipeptides catalyze rapid peptide exchange on MHC class I molecules. Proc. Natl Acad. Sci. USA 112, 202–207 (2015).
pubmed: 25535340 doi: 10.1073/pnas.1418690112
Bethune, M. T., Comin-Anduix, B., Hwang Fu, Y. H., Ribas, A. & Baltimore, D. Preparation of peptide-MHC and T-cell receptor dextramers by biotinylated dextran doping. Biotechniques 62, 123–130 (2017).
Luimstra, J. J. et al. A flexible MHC class I multimer loading system for large-scale detection of antigen-specific T cells. J. Exp. Med. 215, 1493–1504 (2018).
pubmed: 29666167 pmcid: 5940271 doi: 10.1084/jem.20180156
Hadrup, S. R. et al. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat. Methods 6, 520–526 (2009).
pubmed: 19543285 doi: 10.1038/nmeth.1345
Newell, E. W., Klein, L. O., Yu, W. & Davis, M. M. Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat. Methods 6, 497–499 (2009).
pubmed: 19543286 pmcid: 2731062 doi: 10.1038/nmeth.1344
van Rooij, N. et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 31, e439–e442 (2013).
pubmed: 24043743 doi: 10.1200/JCO.2012.47.7521
Newell, E. W., Sigal, N., Bendall, S. C., Nolan, G. P. & Davis, M. M. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8
pubmed: 22265676 pmcid: 3752833 doi: 10.1016/j.immuni.2012.01.002
Ornatsky, O., Baranov, V. I., Bandura, D. R., Tanner, S. D. & Dick, J. Multiple cellular antigen detection by ICP-MS. J. Immunol. Methods 308, 68–76 (2006).
pubmed: 16336974 doi: 10.1016/j.jim.2005.09.020
Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).
pubmed: 21551058 pmcid: 3273988 doi: 10.1126/science.1198704
Newell, E. W. et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol. 31, 623–629 (2013).
pubmed: 23748502 pmcid: 3796952 doi: 10.1038/nbt.2593
Fehlings, M. et al. Checkpoint blockade immunotherapy reshapes the high-dimensional phenotypic heterogeneity of murine intratumoural neoantigen-specific CD8
pubmed: 28916749 pmcid: 5601925 doi: 10.1038/s41467-017-00627-z
Rammensee, H. G., Falk, K. & Rötzschke, O. Peptides naturally presented by MHC class I molecules. Annu. Rev. Immunol. 11, 213–244 (1993).
pubmed: 8476560 doi: 10.1146/annurev.iy.11.040193.001241
Robins, H. S. et al. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114, 4099–4107 (2009).
pubmed: 19706884 pmcid: 2774550 doi: 10.1182/blood-2009-04-217604
Stevanović, S. & Schild, H. Quantitative aspects of T cell activation—peptide generation and editing by MHC class I molecules. Semin. Immunol. 11, 375–384 (1999).
pubmed: 10625591 doi: 10.1006/smim.1999.0195
Bentzen, A. K. et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 34, 1037–1045 (2016). This work, along with the study by Zhang et al.
pubmed: 27571370 doi: 10.1038/nbt.3662
Saini, S. K. et al. Empty peptide-receptive MHC class I molecules for efficient detection of antigen-specific T cells. Semin. Immunol. 4, eaau9039 (2019).
Bentzen, A. K. et al. T cell receptor fingerprinting enables in-depth characterization of the interactions governing recognition of peptide-MHC complexes. Nat. Biotechnol. 36, 1191–1196 (2018).
doi: 10.1038/nbt.4303
Pedersen, N. W. et al. CD8
pubmed: 30783092 pmcid: 6381094 doi: 10.1038/s41467-019-08774-1
Zhang, S. Q. et al. High-throughput determination of the antigen specificities of T cell receptors in single cells. Nat. Biotechnol. 36, 1156–1159 (2018).
doi: 10.1038/nbt.4282
Xu, Q., Schlabach, M. R., Hannon, G. J. & Elledge, S. J. Design of 240,000 orthogonal 25mer DNA barcode probes. Proc. Natl Acad. Sci. USA 106, 2289–2294 (2009).
pubmed: 19171886 pmcid: 2631075 doi: 10.1073/pnas.0812506106
Peng, S. et al. Sensitive detection and analysis of neoantigen-specific T cell populations from tumors and Blood. Cell Rep 28, 2728–2738 (2019).
pubmed: 31484081 pmcid: 6774618 doi: 10.1016/j.celrep.2019.07.106
Segaliny, A. I. et al. Functional TCR T cell screening using single-cell droplet microfluidics. Lab Chip 18, 3733–3749 (2018). This study utilized droplet microfluidics technology for functional screening and real-time monitoring of single TCR T cell activation upon recognition of target tumor cells.
pubmed: 30397689 pmcid: 6279597 doi: 10.1039/C8LC00818C
Varadarajan, N. et al. Rapid, efficient functional characterization and recovery of HIV-specific human CD8
pubmed: 22355106 pmcid: 3309713 doi: 10.1073/pnas.1111205109
Ng, A. H. C. et al. MATE-Seq: microfluidic antigen-TCR engagement sequencing. Lab Chip 19, 3011–3021 (2019).
pubmed: 31502632 doi: 10.1039/C9LC00538B
Hemmer, B. et al. Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J. Exp. Med. 185, 1651–1659 (1997).
pubmed: 9151902 pmcid: 2196302 doi: 10.1084/jem.185.9.1651
Gavin, M. A., Dere, B., Grandea, A. G. III, Hogquist, K. A. & Bevan, M. J. Major histocompatibility complex class I allele-specific peptide libraries: identification of peptides that mimic an H-Y T cell epitope. Eur. J. Immunol. 24, 2124–2133 (1994).
pubmed: 7522161 doi: 10.1002/eji.1830240929
Pinilla, C. et al. Combinatorial peptide libraries as an alternative approach to the identification of ligands for tumor-reactive cytolytic T lymphocytes. Cancer Res. 61, 5153–5160 (2001).
pubmed: 11431354
Gavin, M. A. & Bevan, M. J. Major histocompatibility complex allele-specific peptide libraries and identification of T-cell mimotopes. Methods Mol. Biol. 87, 235–248 (1998).
pubmed: 9523275
Wilson, D. B. et al. Immunogenicity. I. Use of peptide libraries to identify epitopes that activate clonotypic CD4
pubmed: 10586032
Hiemstra, H. S. et al. The identification of CD4
pubmed: 9294207 pmcid: 23359 doi: 10.1073/pnas.94.19.10313
Rubio-Godoy, V. et al. Combinatorial peptide library-based identification of peptide ligands for tumor-reactive cytolytic T lymphocytes of unknown specificity. Eur. J. Immunol. 32, 2292–2299 (2002).
pubmed: 12209642 doi: 10.1002/1521-4141(200208)32:8<2292::AID-IMMU2292>3.0.CO;2-K
Sherev, T., Wiesmüller, K. H. & Walden, P. Mimotopes of tumor-associated T-cell epitopes for cancer vaccines determined with combinatorial peptide libraries. Mol. Biotechnol. 25, 53–61 (2003).
pubmed: 13679635 doi: 10.1385/MB:25:1:53
Linnemann, T. et al. Mimotopes for tumor-specific T lymphocytes in human cancer determined with combinatorial peptide libraries. Eur. J. Immunol. 31, 156–165 (2001).
pubmed: 11169449 doi: 10.1002/1521-4141(200101)31:1<156::AID-IMMU156>3.0.CO;2-P
Nino-Vasquez, J. J. et al. A powerful combination: the use of positional scanning libraries and biometrical analysis to identify cross-reactive T cell epitopes. Mol. Immunol. 40, 1063–1074 (2004).
pubmed: 15036911 doi: 10.1016/j.molimm.2003.11.005
Barber, J. S. et al. Peptide library-based evaluation of T-cell receptor breadth detects defects in global and regulatory activation in human immunologic diseases. Proc. Natl Acad. Sci. USA 110, 8164–8169 (2013).
pubmed: 23637345 pmcid: 3657790 doi: 10.1073/pnas.1302103110
Ernst, W. et al. Baculovirus surface display: construction and screening of a eukaryotic epitope library. Nucleic Acids Res. 26, 1718–1723 (1998).
pubmed: 9512544 pmcid: 147480 doi: 10.1093/nar/26.7.1718
Kozono, H., White, J., Clements, J., Marrack, P. & Kappler, J. Production of soluble MHC class II proteins with covalently bound single peptides. Nature 369, 151–154 (1994).
pubmed: 8177320 doi: 10.1038/369151a0
Szardenings, M. Phage display of random peptide libraries: applications, limits, and potential. J. Recept. Signal Transduct. Res. 23, 307–349 (2003).
pubmed: 14753295 doi: 10.1081/RRS-120026973
Crawford, F., Huseby, E., White, J., Marrack, P. & Kappler, J. W. Mimotopes for alloreactive and conventional T cells in a peptide-MHC display library. PLoS Biol. 2, E90 (2004).
pubmed: 15094798 pmcid: 387264 doi: 10.1371/journal.pbio.0020090
Wang, Y. et al. Using a baculovirus display library to identify MHC class I mimotopes. Proc. Natl Acad. Sci. USA 102, 2476–2481 (2005).
pubmed: 15699351 pmcid: 548325 doi: 10.1073/pnas.0409798102
Crawford, F. et al. Use of baculovirus MHC/peptide display libraries to characterize T-cell receptor ligands. Immunol. Rev. 210, 156–170 (2006).
pubmed: 16623770 doi: 10.1111/j.0105-2896.2006.00365.x
Wen, F., Sethi, D. K., Wucherpfennig, K. W. & Zhao, H. Cell surface display of functional human MHC class II proteins: yeast display versus insect cell display. Protein Eng. Des. Sel. 24, 701–709 (2011).
pubmed: 21752831 pmcid: 3160208 doi: 10.1093/protein/gzr035
Birnbaum, M. E., Dong, S. & Garcia, K. C. Diversity-oriented approaches for interrogating T-cell receptor repertoire, ligand recognition, and function. Immunol. Rev. 250, 82–101 (2012).
pubmed: 23046124 pmcid: 3474532 doi: 10.1111/imr.12006
Brophy, S. E., Holler, P. D. & Kranz, D. M. A yeast display system for engineering functional peptide-MHC complexes. J. Immunol. Methods 272, 235–246 (2003).
pubmed: 12505727 doi: 10.1016/S0022-1759(02)00439-8
Boder, E. T. & Wittrup, K. D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 (1997). This report describes yeast display of combinatorial polypeptide libraries.
pubmed: 9181578 doi: 10.1038/nbt0697-553
Kieke, M. C., Cho, B. K., Boder, E. T., Kranz, D. M. & Wittrup, K. D. Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng. 10, 1303–1310 (1997).
pubmed: 9514119 doi: 10.1093/protein/10.11.1303
Boder, E. T., Bill, J. R., Nields, A. W., Marrack, P. C. & Kappler, J. W. Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide. Biotechnol. Bioeng. 92, 485–491 (2005).
pubmed: 16155952 doi: 10.1002/bit.20616
Wen, F., Esteban, O. & Zhao, H. Rapid identification of CD4
pubmed: 18448115 doi: 10.1016/j.jim.2008.03.008
Wen, F. & Zhao, H. Construction and screening of an antigen-derived peptide library displayed on yeast cell surface for CD4
pubmed: 23963942 doi: 10.1007/978-1-62703-589-7_15
Adams, J. J. et al. T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity 35, 681–693 (2011).
pubmed: 22101157 pmcid: 3253265 doi: 10.1016/j.immuni.2011.09.013
Gee, M. H. et al. Antigen identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell 172, 549–563 (2018).
pubmed: 29275860 doi: 10.1016/j.cell.2017.11.043
Birnbaum, M. E. et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157, 1073–1087 (2014).
pubmed: 24855945 pmcid: 4071348 doi: 10.1016/j.cell.2014.03.047
Starwalt, S. E., Masteller, E. L., Bluestone, J. A. & Kranz, D. M. Directed evolution of a single-chain class II MHC product by yeast display. Protein Eng. 16, 147–156 (2003).
pubmed: 12676983 doi: 10.1093/proeng/gzg018
Davis, M. M. & Boyd, S. D. Recent progress in the analysis of αβT cell and B cell receptor repertoires. Curr. Opin. Immunol. 59, 109–114 (2019).
pubmed: 31326777 pmcid: 7075470 doi: 10.1016/j.coi.2019.05.012
Joglekar, A. V. et al. T cell antigen discovery via signaling and antigen-presenting bifunctional receptors. Nat. Methods 16, 191–198 (2019). This study, along with Kisielow et al.
pubmed: 30700902 pmcid: 6755906 doi: 10.1038/s41592-018-0304-8
Kisielow, J., Obermair, F.-J. & Kopf, M. Deciphering CD4
pubmed: 30858620 doi: 10.1038/s41590-019-0335-z
Kula, T. et al. T-Scan: a genome-wide method for the systematic discovery of T cell epitopes. Cell 178, 1016–1028 (2019).
pubmed: 31398327 pmcid: 6939866 doi: 10.1016/j.cell.2019.07.009
Li, G. et al. T cell antigen discovery via trogocytosis. Nat. Methods 16, 183–190 (2019).
pubmed: 30700903 pmcid: 6719556 doi: 10.1038/s41592-018-0305-7
Sharma, G., Rive, C. M. & Holt, R. A. Rapid selection and identification of functional CD8
pubmed: 31591401 pmcid: 6779888 doi: 10.1038/s41467-019-12444-7
Joly, E. & Hudrisier, D. What is trogocytosis and what is its purpose? Nat. Immunol. 4, 815 (2003).
pubmed: 12942076 doi: 10.1038/ni0903-815
Emerson, R. O. et al. Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nat. Genet. 49, 659–665 (2017).
pubmed: 28369038 doi: 10.1038/ng.3822
DeWitt, W. S. III et al. Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity. Elife 7, e38358 (2018).
pubmed: 30152754 pmcid: 6162092 doi: 10.7554/eLife.38358
Huth, A., Liang, X., Krebs, S., Blum, H. & Moosmann, A. Antigen-specific TCR signatures of cytomegalovirus infection. J. Immunol. 202, 979–990 (2019).
pubmed: 30587531 doi: 10.4049/jimmunol.1801401
Dash, P. et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547, 89–93 (2017). This study, along with Glanville et al.
pubmed: 28636592 pmcid: 5616171 doi: 10.1038/nature22383
Glanville, J. et al. Identifying specificity groups in the T cell receptor repertoire. Nature 547, 94–98 (2017).
pubmed: 28636589 pmcid: 5794212 doi: 10.1038/nature22976
Lanzarotti, E., Marcatili, P. & Nielsen, M. T-cell receptor cognate target prediction based on paired α and β chain sequence and structural CDR loop similarities. Front. Immunol. 10, 2080 (2019).
pubmed: 31555288 pmcid: 6724566 doi: 10.3389/fimmu.2019.02080
Ostmeyer, J., Christley, S., Toby, I. T. & Cowell, L. G. Biophysicochemical motifs in T-cell receptor sequences distinguish repertoires from tumor-infiltrating lymphocyte and adjacent healthy tissue. Cancer Res. 79, 1671–1680 (2019).
pubmed: 30622114 pmcid: 6445742 doi: 10.1158/0008-5472.CAN-18-2292
Li, B. et al. Investigation of antigen-specific T cell receptor clusters in human cancers. Clin. Cancer Res. 26, 1359–1371 (2019).
pubmed: 31831563
Carter, J. A. et al. Single T cell sequencing demonstrates the functional role of αβ TCR pairing in cell lineage and antigen specificity. Front. Immunol. 10, 1516 (2019).
pubmed: 31417541 pmcid: 6684766 doi: 10.3389/fimmu.2019.01516
Singh, N. K. et al. Emerging concepts in TCR specificity: rationalizing and (maybe) predicting outcomes. J. Immunol. 199, 2203–2213 (2017).
pubmed: 28923982 doi: 10.4049/jimmunol.1700744

Auteurs

Alok V Joglekar (AV)

Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. joglekar@pitt.edu.
Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. joglekar@pitt.edu.
Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. joglekar@pitt.edu.

Guideng Li (G)

Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. guidengl_ism@163.com.
Suzhou Institute of Systems Medicine, Suzhou, China. guidengl_ism@163.com.
Key Laboratory of Synthetic Biology Regulatory Element, Chinese Academy of Medical Sciences, Beijing, China. guidengl_ism@163.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH