Singlemoded THz guidance in bendable TOPAS suspended-core fiber directly drawn from a 3D printer.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
06 Jul 2020
Historique:
received: 11 12 2019
accepted: 11 06 2020
entrez: 8 7 2020
pubmed: 8 7 2020
medline: 8 7 2020
Statut: epublish

Résumé

Terahertz (THz) technology has witnessed a significant growth in a wide range of applications, including spectroscopy, bio-medical sensing, astronomical and space detection, THz tomography, and non-invasive imaging. Current THz microstructured fibers show a complex fabrication process and their flexibility is severely restricted by the relatively large cross-sections, which turn them into rigid rods. In this paper, we demonstrate a simple and novel method to fabricate low-cost THz microstructured fibers. A cyclic olefin copolymer (TOPAS) suspended-core fiber guiding in the THz is extruded from a structured 3D printer nozzle and directly drawn in a single step process. Spectrograms of broadband THz pulses propagated through different lengths of fiber clearly indicate guidance in the fiber core. Cladding mode stripping allow for the identification of the single mode in the spectrograms and the determination of the average propagation loss (~ 0.11 dB/mm) in the 0.5-1 THz frequency range. This work points towards single step manufacturing of microstructured fibers using a wide variety of materials and geometries using a 3D printer platform.

Identifiants

pubmed: 32632256
doi: 10.1038/s41598-020-68079-y
pii: 10.1038/s41598-020-68079-y
pmc: PMC7338405
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

11045

Références

Yakovlev, E. V., Zaytsev, K. I., Dolganova, I. N. & Yurchenko, S. O. Non-destructive evaluation of polymer composite materials at the manufacturing stage using terahertz pulsed spectroscopy. IEEE Trans. Terahertz Sci. Technol. 5, 810–816. https://doi.org/10.1109/TTHZ.2015.2460671 (2015).
doi: 10.1109/TTHZ.2015.2460671
Mittleman, D. M. Twenty years of terahertz imaging [Invited]. Opt. Express 26, 9417–9431. https://doi.org/10.1364/OE.26.009417 (2018).
doi: 10.1364/OE.26.009417 pubmed: 29715894
Zhang, M. & Yeow, J. T. W. Nanotechnology-based terahertz biological sensing: a review of its current state and things to come. IEEE Nanatechnol. Mag. 10, 30–38. https://doi.org/10.1109/MNANO.2016.2572244 (2016).
doi: 10.1109/MNANO.2016.2572244
Borovkova, M. et al. Terahertz time-domain spectroscopy for non-invasive assessment of water content in biological samples. Biomed. Opt. Express 9, 2266–2276. https://doi.org/10.1364/BOE.9.002266 (2018).
doi: 10.1364/BOE.9.002266 pubmed: 29760985 pmcid: 5946786
Islam, M. S. et al. A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18, 575–582. https://doi.org/10.1109/JSEN.2017.2775642 (2018).
doi: 10.1109/JSEN.2017.2775642
Swearer, D. F. et al. Monitoring chemical reactions with terahertz rotational spectroscopy. ACS Photon. 5, 3097–3106. https://doi.org/10.1021/acsphotonics.8b00342 (2018).
doi: 10.1021/acsphotonics.8b00342
Akyildiz, I. F., Jornet, J. M. & Han, C. Terahertz band: Next frontier for wireless communications. Physical Communication 12, 16–32. https://doi.org/10.1016/j.phycom.2014.01.006 (2014).
doi: 10.1016/j.phycom.2014.01.006
Hwu, S. U., deSilva, K. B. & Jih, C. T. in 2013 IEEE Sensors Applications Symposium Proceedings. 171–175.
Dhillon, S. S. et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 50, 043001. https://doi.org/10.1088/1361-6463/50/4/043001 (2017).
doi: 10.1088/1361-6463/50/4/043001
Wang, K. & Mittleman, D. M. Metal wires for terahertz wave guiding. Nature 432, 376–379. https://doi.org/10.1038/nature03040 (2004).
doi: 10.1038/nature03040 pubmed: 15549101
Wang, K. & Mittleman, D. M. Guided propagation of terahertz pulses on metal wires. J. Opt. Soc. Am. B 22, 2001–2008. https://doi.org/10.1364/JOSAB.22.002001 (2005).
doi: 10.1364/JOSAB.22.002001
Gallot, G., Jamison, S. P., McGowan, R. W. & Grischkowsky, D. Terahertz waveguides. J. Opt. Soc. Am. B 17, 851–863. https://doi.org/10.1364/JOSAB.17.000851 (2000).
doi: 10.1364/JOSAB.17.000851
Mendis, R. & Grischkowsky, D. THz interconnect with low-loss and low-group velocity dispersion. IEEE Microwave Wirel. Compon. Lett. 11, 444–446. https://doi.org/10.1109/7260.966036 (2001).
doi: 10.1109/7260.966036
Bowden, B., Harrington, J. A. & Mitrofanov, O. Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett. 32, 2945–2947. https://doi.org/10.1364/OL.32.002945 (2007).
doi: 10.1364/OL.32.002945 pubmed: 17938661
Navarro-Cía, M. et al. Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5–5 THz band. Opt. Express 21, 23748–23755. https://doi.org/10.1364/OE.21.023748 (2013).
doi: 10.1364/OE.21.023748 pubmed: 24104287
Ung, B., Mazhorova, A., Dupuis, A., Rozé, M. & Skorobogatiy, M. Polymer microstructured optical fibers for terahertz wave guiding. Opt. Express 19, B848–B861. https://doi.org/10.1364/OE.19.00B848 (2011).
doi: 10.1364/OE.19.00B848 pubmed: 22274113
Argyros, A. Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials. ISRN Opt. 2013, 22. https://doi.org/10.1155/2013/785162 (2013).
doi: 10.1155/2013/785162
Smith, C. M. et al. Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657–659. https://doi.org/10.1038/nature01849 (2003).
doi: 10.1038/nature01849 pubmed: 12904788
Atakaramians, S., Afshar, V. S., Monro, T. M. & Abbott, D. Terahertz dielectric waveguides. Adv. Opt. Photon. 5, 169–215. https://doi.org/10.1364/AOP.5.000169 (2013).
doi: 10.1364/AOP.5.000169
Ponseca, J. C. S. et al. Transmission of terahertz radiation using a microstructured polymer optical fiber. Opt. Lett. 33, 902–904. https://doi.org/10.1364/OL.33.000902 (2008).
doi: 10.1364/OL.33.000902 pubmed: 18451933
Dupuis, A., Stoeffler, K., Ung, B., Dubois, C. & Skorobogatiy, M. Transmission measurements of hollow-core THz Bragg fibers. J. Opt. Soc. Am. B 28, 896–907. https://doi.org/10.1364/JOSAB.28.000896 (2011).
doi: 10.1364/JOSAB.28.000896
Ung, B., Dupuis, A., Stoeffler, K., Dubois, C. & Skorobogatiy, M. High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss. J. Opt. Soc. Am. B 28, 917–921. https://doi.org/10.1364/JOSAB.28.000917 (2011).
doi: 10.1364/JOSAB.28.000917
Cruz, A. L. S., Cordeiro, C. M. B. & Franco, M. A. R. 3D printed hollow-core terahertz fibers. Fibers 6, 43 (2018).
doi: 10.3390/fib6030043
van Putten, L. D., Gorecki, J., Numkam Fokoua, E., Apostolopoulos, V. & Poletti, F. 3D-printed polymer antiresonant waveguides for short-reach terahertz applications. Appl. Opt. 57, 3953–3958. https://doi.org/10.1364/AO.57.003953 (2018).
doi: 10.1364/AO.57.003953 pubmed: 29791365
Stefani, A., Fleming, S. C. & Kuhlmey, B. T. Terahertz orbital angular momentum modes with flexible twisted hollow core antiresonant fiber. APL Photon. 3, 051708. https://doi.org/10.1063/1.5016283 (2018).
doi: 10.1063/1.5016283
Yan, S., Lou, S., Wang, X., Zhao, T. & Zhang, W. High-birefringence hollow-core anti-resonant THz fiber. Opt. Quant. Electron. 50, 162. https://doi.org/10.1007/s11082-018-1402-7 (2018).
doi: 10.1007/s11082-018-1402-7
Mendis, R. & Grischkowsky, D. Plastic ribbon THz waveguides. J. Appl. Phys. 88, 4449–4451. https://doi.org/10.1063/1.1310179 (2000).
doi: 10.1063/1.1310179
Han, H., Park, H., Cho, M. & Kim, J. Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett. 80, 2634–2636. https://doi.org/10.1063/1.1468897 (2002).
doi: 10.1063/1.1468897
Goto, M., Quema, A., Takahashi, H., Ono, S. & Sarukura, N. Teflon photonic crystal fiber as terahertz waveguide. Jpn. J. Appl. Phys. 43, L317–L319. https://doi.org/10.1143/jjap.43.l317 (2004).
doi: 10.1143/jjap.43.l317
Nielsen, K. et al. Bendable, low-loss Topas fibers for the terahertz frequency range. Opt. Express 17, 8592–8601. https://doi.org/10.1364/OE.17.008592 (2009).
doi: 10.1364/OE.17.008592 pubmed: 19434192
Rozé, M., Ung, B., Mazhorova, A., Walther, M. & Skorobogatiy, M. Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance. Opt. Express 19, 9127–9138. https://doi.org/10.1364/OE.19.009127 (2011).
doi: 10.1364/OE.19.009127 pubmed: 21643167
Anthony, J., Leonhardt, R., Argyros, A. & Large, M. C. J. Characterization of a microstructured Zeonex terahertz fiber. J. Opt. Soc. Am. B 28, 1013–1018. https://doi.org/10.1364/JOSAB.28.001013 (2011).
doi: 10.1364/JOSAB.28.001013
Talataisong, W. et al. Novel method for manufacturing optical fiber: extrusion and drawing of microstructured polymer optical fibers from a 3D printer. Opt. Express 26, 32007–32013. https://doi.org/10.1364/OE.26.032007 (2018).
doi: 10.1364/OE.26.032007 pubmed: 30650779
Petropoulos, P. et al. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Opt. Express 11, 3568–3573. https://doi.org/10.1364/OE.11.003568 (2003).
doi: 10.1364/OE.11.003568 pubmed: 19471492
Ebendorff-Heidepriem, H. et al. Bismuth glass holey fibers with high nonlinearity. Opt. Express 12, 5082–5087. https://doi.org/10.1364/OPEX.12.005082 (2004).
doi: 10.1364/OPEX.12.005082 pubmed: 19484061
Feng, X. et al. Extruded singlemode, high-nonlinearity, tellurite glass holey fibre. Electron. Lett. 41, 835–837. https://doi.org/10.1049/el:20051501 (2005).
doi: 10.1049/el:20051501
Leong, J. Y. Y. et al. High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-um pumped supercontinuum generation. J. Lightw. Technol. 24, 183 (2006).
doi: 10.1109/JLT.2005.861114
Ebendorff-Heidepriem, H., Monro, T. M., van Eijkelenborg, M. A. & Large, M. C. J. Extruded high-NA microstructured polymer optical fibre. Opt. Commun. 273, 133–137. https://doi.org/10.1016/j.optcom.2007.01.004 (2007).
doi: 10.1016/j.optcom.2007.01.004
Talataisong, W., Ismaeel, R., Beresna, M. & Brambilla, G. Suspended-core microstructured polymer optical fibers and potential applications in sensing. Sensors 19, 3449 (2019).
doi: 10.3390/s19163449
Apostolopoulos, V. & Barnes, M. E. THz emitters based on the photo-Dember effect. J. Phys. D Appl. Phys. 47, 374002. https://doi.org/10.1088/0022-3727/47/37/374002 (2014).
doi: 10.1088/0022-3727/47/37/374002
Zhang, H., Horvat, J. & Lewis, R. A. in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). 1–2.

Auteurs

Wanvisa Talataisong (W)

Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK. w.talataisong@soton.ac.uk.

Jon Gorecki (J)

Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK.

Rand Ismaeel (R)

Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK.
National Oceanography Centre, Southampton, SO14 3ZH, UK.

Martynas Beresna (M)

Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK.

Daniel Schwendemann (D)

Institute for Material Science and Plastics Processing, University of Applied Sciences Eastern Switzerland, 8640, Rapperswil, Switzerland.

Vasilis Apostolopoulos (V)

School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK.

Gilberto Brambilla (G)

Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK.

Classifications MeSH