Climate shaped how Neolithic farmers and European hunter-gatherers interacted after a major slowdown from 6,100 BCE to 4,500 BCE.


Journal

Nature human behaviour
ISSN: 2397-3374
Titre abrégé: Nat Hum Behav
Pays: England
ID NLM: 101697750

Informations de publication

Date de publication:
10 2020
Historique:
received: 14 01 2019
accepted: 18 05 2020
pubmed: 8 7 2020
medline: 2 12 2020
entrez: 8 7 2020
Statut: ppublish

Résumé

The Neolithic transition in Europe was driven by the rapid dispersal of Near Eastern farmers who, over a period of 3,500 years, brought food production to the furthest corners of the continent. However, this wave of expansion was far from homogeneous, and climatic factors may have driven a marked slowdown observed at higher latitudes. Here, we test this hypothesis by assembling a large database of archaeological dates of first arrival of farming to quantify the expansion dynamics. We identify four axes of expansion and observe a slowdown along three axes when crossing the same climatic threshold. This threshold reflects the quality of the growing season, suggesting that Near Eastern crops might have struggled under more challenging climatic conditions. This same threshold also predicts the mixing of farmers and hunter-gatherers as estimated from ancient DNA, suggesting that unreliable yields in these regions might have favoured the contact between the two groups.

Identifiants

pubmed: 32632332
doi: 10.1038/s41562-020-0897-7
pii: 10.1038/s41562-020-0897-7
doi:

Substances chimiques

DNA, Ancient 0

Types de publication

Historical Article Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1004-1010

Références

Price, T. D. Europe’s First Farmers (Cambridge Univ. Press, 2000).
Perlès, C., Quiles, A. & Valladas, H. Early seventh-millennium AMS dates from domestic seeds in the initial Neolithic at Franchthi Cave (Argolid, Greece). Antiquity 87, 1001–1015 (2013).
Pinhasi, R. & von Cramon-Taubadel, N. Craniometric data supports demic diffusion model for the spread of agriculture into Europe. PLoS ONE 4, e6747 (2009).
pubmed: 19707595 pmcid: 2727056
Von Cramon-Taubadel, N. & Pinhasi, R. Craniometric data support a mosaic model of demic and cultural Neolithic diffusion to outlying regions of Europe. Proc. R. Soc. B Biol. Sci. 278, 2874–2880 (2011).
Cassidy, L. M. et al. Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. Proc. Natl Acad. Sci. USA 113, 368–373 (2016).
pubmed: 26712024
Kılınç, G. M. et al. The demographic development of the first farmers in Anatolia. Curr. Biol. 26, 2659–2666 (2016).
pubmed: 27498567 pmcid: 5069350
Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).
pubmed: 27459054 pmcid: 5003663
Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469 (2012).
pubmed: 22539720
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).
pubmed: 26595274 pmcid: 4918750
Hofmanová, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl Acad. Sci. USA 113, 6886–6891 (2016).
pubmed: 27274049
Banks, W. E., Antunes, N., Rigaud, S. & d’Errico, F. Ecological constraints on the first prehistoric farmers in Europe. J. Archaeol. Sci. 40, 2746–2753 (2013).
Bocquet-Appel, J.-P., Naji, S., Linden, M. V. & Kozlowski, J. K. Detection of diffusion and contact zones of early farming in Europe from the space–time distribution of
Isern, N., Fort, J. & Linden, M. V. Space competition and time delays in human range expansions. Application to the Neolithic transition. PLoS ONE 7, e51106 (2012).
pubmed: 23251430 pmcid: 3519538
Rasse, M. Modélisation de la diffusion du Néolithique en Europe. Mappemonde 3, 14302 (2014).
Fort, J. Demic and cultural diffusion propagated the Neolithic transition across different regions of Europe. J. R. Soc. Interface 12, 20150166 (2015).
pmcid: 4424695
Isern, N. & Fort, J. Anisotropic dispersion, space competition and the slowdown of the Neolithic transition. N. J. Phys. 12, 123002 (2010).
Silva, F. & Steele, J. New methods for reconstructing geographical effects on dispersal rates and routes from large-scale radiocarbon databases. J. Archaeol. Sci. 52, 609–620 (2014).
Bogucki, P. The spread of early farming in Europe. Am. Sci. 84, 242–253 (1996).
Bonsall, C., Macklin, M. G., Anderson, D. E. & Payton, R. W. Climate change and the adoption of agriculture in North-West Europe. Eur. J. Archaeol. 5, 9–23 (2002).
Cockram, J. et al. Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J. Exp. Bot. 58, 1231–1244 (2007).
pubmed: 17420173
Halstead, P. in The Beginnings of Agriculture Vol. 496 (eds. Milles, A. et al.) 23–53 (1989).
Colledge, S., Conolly, J. & Shennan, S. The evolution of Neolithic farming from SW Asian origins to NW European limits. Eur. J. Archaeol. 8, 137–156 (2005).
Paludan-Müller, C. in New Directions in Scandinavian Archaeology (eds. Kristiansen, K. & Paludan-Müller, C.) 120–157 (National Museum of Denmark, 1978).
Price, T. D. in The Widening Harvest. The Neolithic Transition in Europe: Looking Forward, Looking Back (eds. Ammerman, A. J. & Biagi, P.) 273–294 (Archaeological Institute of America, 2003).
Price, T. D. in Prehistoric Hunter-Gatherers: The Emergence of Cultural Complexity (eds. Price, T. D. & Brown, J. A.) 341–360 (Academic Press, 1985).
Zvelebil, M. & Dolukhanov, P. The transition to farming in Eastern and Northern Europe. J. World Prehistory 5, 233–278 (1991).
Isern, N., Zilhão, J., Fort, J. & Ammerman, A. J. Modeling the role of voyaging in the coastal spread of the early Neolithic in the West Mediterranean. Proc. Natl Acad. Sci. USA 114, 897–902 (2017).
pubmed: 28096413
Codling, E. A., Plank, M. J. & Benhamou, S. Random walk models in biology. J. R. Soc. Interface 5, 813–834 (2008).
pubmed: 18426776 pmcid: 2504494
Russelle, M. P., Wilhelm, W. W., Olson, R. A. & Power, J. F. Growth analysis based on degree days. Crop Sci. 24, 28–32 (1984).
Schlenker, W., Hanemann, W. M. & Fisher, A. C. The impact of global warming on U.S. agriculture: an econometric analysis of optimal growing conditions. Rev. Econ. Stat. 88, 113–125 (2006).
Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).
pubmed: 29144465 pmcid: 5973800
Pinhasi, R., Foley, R. A. & Lahr, M. M. in Archaeogenetics: DNA and the Population Prehistory of Europe (eds. Renfrew, C. & Boyle, K.) 45–56 (McDonald Institute for Archaeological Research, 2000).
Steele, J. & Shennan, S. J. Spatial and chronological patterns in the neolithisation of Europe. Archaeology Data Service https://doi.org/10.5284/1000207 (2000).
Vermeersch, P. M. Radiocarbon Palaeolithic Europe Database Version 21 (Katholieke Universiteit Leuven, 2017); http://ees.kuleuven.be/geography/projects/14c-palaeolithic/index.html
Silva, F. & Vander Linden, M. Amplitude of travelling front as inferred from
pubmed: 28931884 pmcid: 5607300
Coward, F., Shennan, S., Colledge, S., Conolly, J. & Collard, M. The spread of Neolithic plant economies from the Near East to northwest Europe: a phylogenetic analysis. J. Archaeol. Sci. 35, 42–56 (2008).
Conolly, J., Colledge, S. & Shennan, S. Founder effect, drift, and adaptive change in domestic crop use in early Neolithic Europe. J. Archaeol. Sci. 35, 2797–2804 (2008).
Bogucki, P. in Europe’s First Farmers (ed. Price, T. D.) 197–218 (Cambridge Univ. Press, 2000).
Sørensen, L. & Karg, S. The expansion of agrarian societies towards the north—new evidence for agriculture during the Mesolithic/Neolithic transition in Southern Scandinavia. J. Archaeol. Sci. 51, 98–114 (2014).
Stevens, C. J. & Fuller, D. Q. Did Neolithic farming fail? The case for a Bronze Age agricultural revolution in the British Isles. Antiquity 86, 707–722 (2012).
Stevens, C. J. & Fuller, D. Q. Alternative strategies to agriculture: the evidence for climatic shocks and cereal declines during the British Neolithic and Bronze Age (a reply to Bishop). World Archaeol. 47, 856–875 (2015).
Bishop, R. R. Did late Neolithic farming fail or flourish? A Scottish perspective on the evidence for late Neolithic arable cultivation in the British Isles. World Archaeol. 47, 834–855 (2015).
Fuller, D. Q. & Allaby, R. Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. in Annual Plant Reviews Vol. 38 (ed. Østergaard, L.) 238–295 (Wiley-Blackwell, 2009).
Giampoudakis, K. et al. Niche dynamics of Palaeolithic modern humans during the settlement of the Palaearctic. Glob. Ecol. Biogeogr. 26, 359–370 (2017).
Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H. & Seppä, H. Human population dynamics in Europe over the Last Glacial Maximum. Proc. Natl Acad. Sci. USA 112, 8232–8237 (2015).
pubmed: 26100880
Galeta, P., Sládek, V., Sosna, D. & Bruzek, J. Modeling Neolithic dispersal in Central Europe: demographic implications. Am. J. Phys. Anthropol. 146, 104–115 (2011).
pubmed: 21732320
Bar-Yosef, O. Climatic fluctuations and early farming in West and East Asia. Curr. Anthropol. 52, S175–S193 (2011).
Siska, V. et al. Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago. Sci. Adv. 3, e1601877 (2017).
pubmed: 28164156 pmcid: 5287702
Pinhasi, R., Fort, J. & Ammerman, A. J. Tracing the origin and spread of agriculture in Europe. PLoS Biol. 3, e410 (2005).
pubmed: 16292981 pmcid: 1287502
Bronk Ramsey, C. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).
Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).
Singarayer, J. S. & Valdes, P. J. High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr. Quat. Sci. Rev. 29, 43–55 (2010).
Eriksson, A. et al. Late Pleistocene climate change and the global expansion of anatomically modern humans. Proc. Natl Acad. Sci. USA 109, 16089–16094 (2012).
pubmed: 22988099
Maraun, D. & Widmann, M. Statistical Downscaling and Bias Correction for Climate Research (Cambridge Univ. Press, 2017).
New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).
Kaplan, J. O. et al. Climate change and Arctic ecosystems: 2. Modeling, paleodata–model comparisons, and future projections. J. Geophys. Res. Atmos. 108, 8171 (2003).
Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).
Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).
pubmed: 29466337 pmcid: 5973796
Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).
pubmed: 29466330 pmcid: 6091220
Martiniano, R. et al. The population genomics of archaeological transition in west Iberia: investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet. 13, e1006852 (2017).
pubmed: 28749934 pmcid: 5531429
Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).
pubmed: 27654912 pmcid: 27654912
Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014).
pubmed: 25334030 pmcid: 4218962
Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).
pubmed: 27135931 pmcid: 4943878
Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014).
pubmed: 24463515 pmcid: 4269527
Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).
pubmed: 25230663 pmcid: 4170574
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
pubmed: 22960212 pmcid: 3522152
Lipson, M. et al. Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science 361, 92–95 (2018).
pubmed: 29773666 pmcid: 6476732
Attenbrow, V. What’s Changing: Population Size or Land-Use Patterns? The Archaeology of Upper Mangrove Creek, Sydney Basin Vol. 21 (ANU Press, 2006).
Naudinot, N., Tomasso, A., Tozzi, C. & Peresani, M. Changes in mobility patterns as a factor of
Tallavaara, M., Pesonen, P. & Oinonen, M. Prehistoric population history in eastern Fennoscandia. J. Archaeol. Sci. 37, 251–260 (2010).
Binford, L. R. Willow smoke and dogs’ tails: hunter-gatherer settlement systems and archaeological site formation. Am. Antiq. 45, 4–20 (1980).
Kelly, R. L. The Lifeways of Hunter-Gatherers (Cambridge Univ. Press, 2013).
Layton, R. & O’Hara, S. in Social Brain, Distributed Mind (eds. Dunbar, R. et al.) 83–113 (British Academy, 2010).
Becker, R. A. & Wilks, A. R. R maps: Draw geographical maps. R version 3.3.0 https://cran.r-project.org/web/packages/maps/ (2018).
Greene, C. A. et al. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst. 20, 3774–3781 (2019).

Auteurs

Lia Betti (L)

Centre for Research in Evolutionary, Social and Inter-Disciplinary Anthropology, Department of Life Sciences, University of Roehampton, London, UK. lia.betti@roehampton.ac.uk.

Robert M Beyer (RM)

Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, UK. rb792@cam.ac.uk.
PAVE Research Group, Department of Archaeology, University of Cambridge, Cambridge, UK. rb792@cam.ac.uk.

Eppie R Jones (ER)

Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, UK.

Anders Eriksson (A)

Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, UK.
Department of Medical and Molecular Genetics, King's College London, Guys Hospital, London, UK.
cGEM, Institute of Genomics, University of Tartu, Tartu, Estonia.

Francesca Tassi (F)

Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.

Veronika Siska (V)

Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, UK.

Michela Leonardi (M)

Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, UK.

Pierpaolo Maisano Delser (P)

Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, UK.
Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.

Lily K Bentley (LK)

Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, UK.

Philip R Nigst (PR)

Department of Archaeology, University of Cambridge, Cambridge, UK.

Jay T Stock (JT)

PAVE Research Group, Department of Archaeology, University of Cambridge, Cambridge, UK.
Department of Anthropology, University of Western Ontario, London, Ontario, Canada.
Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.

Ron Pinhasi (R)

Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.

Andrea Manica (A)

Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, UK. am315@cam.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH