Intrinsic network architecture predicts the effects elicited by intracranial electrical stimulation of the human brain.


Journal

Nature human behaviour
ISSN: 2397-3374
Titre abrégé: Nat Hum Behav
Pays: England
ID NLM: 101697750

Informations de publication

Date de publication:
10 2020
Historique:
received: 21 06 2019
accepted: 04 06 2020
pubmed: 8 7 2020
medline: 2 12 2020
entrez: 8 7 2020
Statut: ppublish

Résumé

Intracranial electrical stimulation (iES) of the human brain has long been known to elicit a remarkable variety of perceptual, motor and cognitive effects, but the functional-anatomical basis of this heterogeneity remains poorly understood. We conducted a whole-brain mapping of iES-elicited effects, collecting first-person reports following iES at 1,537 cortical sites in 67 participants implanted with intracranial electrodes. We found that intrinsic network membership and the principal gradient of functional connectivity strongly predicted the type and frequency of iES-elicited effects in a given brain region. While iES in unimodal brain networks at the base of the cortical hierarchy elicited frequent and simple effects, effects became increasingly rare, heterogeneous and complex in heteromodal and transmodal networks higher in the hierarchy. Our study provides a comprehensive exploration of the relationship between the hierarchical organization of intrinsic functional networks and the causal modulation of human behaviour and experience with iES.

Identifiants

pubmed: 32632334
doi: 10.1038/s41562-020-0910-1
pii: 10.1038/s41562-020-0910-1
pmc: PMC7572705
mid: NIHMS1614533
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1039-1052

Subventions

Organisme : NIMH NIH HHS
ID : P50 MH109429
Pays : United States
Organisme : NIMH NIH HHS
ID : R00 MH103479
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH116914
Pays : United States
Organisme : CIHR
Pays : Canada

Commentaires et corrections

Type : CommentIn

Références

Borchers, S., Himmelbach, M., Logothetis, N. & Karnath, H.-O. Direct electrical stimulation of human cortex—the gold standard for mapping brain functions? Nat. Rev. Neurosci. 13, 63–70 (2012).
Penfield, W. & Perot, P. The brain’s record of auditory and visual experience: a final summary and discussion. Brain 86, 595–696 (1963).
Penfield, W. & Rasmussen, T. The Cerebral cortex of Man: a Clinical Study of Localization of Function (Macmillan, 1950).
Huntenburg, J. M., Bazin, P.-L. & Margulies, D. S. Large-scale gradients in human cortical organization. Trends Cogn. Sci. 22, 21–31 (2018).
pubmed: 29203085
Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
pubmed: 21653723
Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).
pubmed: 22099467 pmcid: 3222858
Alhourani, A. et al. Network effects of deep brain stimulation. J. Neurophysiol. 114, 2105–2117 (2015).
pubmed: 26269552 pmcid: 4595613
Khambhati, A. N. et al. Functional control of electrophysiological network architecture using direct neurostimulation in humans. Netw. Neurosci. 3, 848–877 (2019).
pubmed: 31410383 pmcid: 6663306
Keller, C. J. et al. Induction and quantification of excitability changes in human cortical networks. J. Neurosci. 38, 5384–5398 (2018).
pubmed: 29875229 pmcid: 5990984
Shine, J. M. et al. Distinct patterns of temporal and directional connectivity among intrinsic networks in the human brain. J. Neurosci. 37, 9667–9674 (2017).
pubmed: 28893929 pmcid: 6596608
Solomon, E. et al. Medial temporal lobe functional connectivity predicts stimulation-induced theta power. Nat. Commun. 9, 4437 (2018).
pubmed: 30361627 pmcid: 6202342
Keller, C. J. et al. Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proc. Natl Acad. Sci. USA 108, 10308–10313 (2011).
pubmed: 21636787
Betzel, R. F. et al. Structural, geometric and genetic factors predict interregional brain connectivity patterns probed by electrocorticography. Nat. Biomed. Eng. 3, 902–916 (2019).
pubmed: 31133741
Mayberg, H. S., Riva-Posse, P. & Crowell, A. L. Deep brain stimulation for depression: keeping an eye on a moving target. JAMA Psychiatry 73, 439–440 (2016).
Morishita, T., Fayad, S. M., Higuchi, M.-A., Nestor, K. A. & Foote, K. D. Deep brain stimulation for treatment-resistant depression: systematic review of clinical outcomes. Neurotherapeutics 11, 475–484 (2014).
pubmed: 24867326 pmcid: 4121451
Famm, K., Litt, B., Tracey, K. J., Boyden, E. S. & Slaoui, M. A jump-start for electroceuticals. Nature 496, 159–161 (2013).
pubmed: 23579662 pmcid: 4179459
Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).
pubmed: 27791099
Glasser, M. F. & Van Essen, D. C. Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI. J. Neurosci. 31, 11597–11616 (2011).
pubmed: 21832190 pmcid: 3167149
Goldstein, H. E. et al. Risk of seizures induced by intracranial research stimulation: analysis of 770 stimulation sessions. J. Neural Eng. 16, 066039 (2019).
pubmed: 31509808
Awad, I. A., Rosenfeld, J., Ahl, J., Hahn, J. F. & Lüders, H. Intractable epilepsy and structural lesions of the brain: mapping, resection strategies, and seizure outcome. Epilepsia 32, 179–186 (1991).
pubmed: 1900789
Fox, K. C. R. et al. Changes in subjective experience elicited by direct stimulation of the human orbitofrontal cortex. Neurology 91, e1519–e1527 (2018).
pubmed: 6202946 pmcid: 6202946
Yih, J., Beam, D. E., Fox, K. C. R. & Parvizi, J. Intensity of affective experience is modulated by magnitude of electrical stimulation in human orbitofrontal, cingulate, and insular cortices. Soc. Cogn. Affect. Neurosci. 14, 339–351 (2019).
pubmed: 30843590 pmcid: 6537947
Groppe, D. M. et al. iELVis: an open source MATLAB toolbox for localizing and visualizing human intracranial electrode data. J. Neurosci. Methods 281, 40–48 (2017).
pubmed: 28192130
Rangarajan, V. et al. Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J. Neurosci. 34, 12828–12836 (2014).
pubmed: 25232118 pmcid: 4166163
Goldberg, E. Gradiental approach to neocortical functional organization. J. Clin. Exp. Neuropsychol. 11, 489–517 (1989).
pubmed: 2474566
Mesulam, M.-M. From sensation to cognition. Brain 121, 1013–1052 (1998).
pubmed: 9648540
Damasio, A. R. & Damasio, H. in Large-Scale Neuronal Theories of the Brain (eds Koch, C. & Davis, J. L.) 61–74 (MIT Press, 1994).
Jones, E. & Powell, T. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93, 793–820 (1970).
pubmed: 4992433
Selimbeyoglu, A. & Parvizi, J. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front. Hum. Neurosci. 4, 46 (2010).
pubmed: 20577584 pmcid: 2889679
Winawer, J. & Parvizi, J. Linking electrical stimulation of human primary visual cortex, size of affected cortical area, neuronal responses, and subjective experience. Neuron 92, 1213–1219 (2016).
pubmed: 27939584 pmcid: 5182175
Mohan, U. R. et al. The effects of direct brain stimulation in humans depend on frequency, amplitude, and white-matter proximity. Brain Stim. 13, 1183–1195 (2020).
Gordon, B. et al. Parameters for direct cortical electrical stimulation in the human: histopathologic confirmation. Electroencephalogr. Clin. Neurophysiol. 75, 371–377 (1990).
pubmed: 1692272
Huntenburg, J. M. et al. A systematic relationship between functional connectivity and intracortical myelin in the human cerebral cortex. Cereb. Cortex 27, 981–997 (2017).
pubmed: 28184415 pmcid: 5390400
Parvizi, J., Rangarajan, V., Shirer, W. R., Desai, N. & Greicius, M. D. The will to persevere induced by electrical stimulation of the human cingulate gyrus. Neuron 80, 1359–1367 (2013).
Blanke, O., Ortigue, S., Landis, T. & Seeck, M. Stimulating illusory own-body perceptions. Nature 419, 269–270 (2002).
pubmed: 12239558
Desmurget, M. et al. Movement intention after parietal cortex stimulation in humans. Science 324, 811–813 (2009).
pubmed: 19423830
Rangarajan, V. & Parvizi, J. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation. Neuropsychologia 83, 29–36 (2016).
pubmed: 26277460
Toga, A. W. & Thompson, P. M. Mapping brain asymmetry. Nat. Rev. Neurosci. 4, 37–48 (2003).
pubmed: 12511860
Histed, M. H., Ni, A. M. & Maunsell, J. H. Insights into cortical mechanisms of behavior from microstimulation experiments. Prog. Neurobiol. 103, 115–130 (2013).
pubmed: 22307059
Desmurget, M., Song, Z., Mottolese, C. & Sirigu, A. Re-establishing the merits of electrical brain stimulation. Trends Cogn. Sci. 17, 442–449 (2013).
Azarfar, A., Calcini, N., Huang, C., Zeldenrust, F. & Celikel, T. Neural coding: a single neuron’s perspective. Neurosci. Biobehav. Rev. 94, 238–247 (2018).
pubmed: 30227142
Horton, J. C. & Adams, D. L. The cortical column: a structure without a function. Phil. Trans. R. Soc. B Biol. Sci. 360, 837–862 (2005).
Patel, G. H., Kaplan, D. M. & Snyder, L. H. Topographic organization in the brain: searching for general principles. Trends Cogn. Sci. 18, 351–363 (2014).
pubmed: 24862252 pmcid: 4074559
Grill-Spector, K. & Malach, R. The human visual cortex. Annu. Rev. Neurosci. 27, 649–677 (2004).
pubmed: 15217346
Bendor, D. & Wang, X. The neuronal representation of pitch in primate auditory cortex. Nature 436, 1161–1165 (2005).
pubmed: 16121182 pmcid: 1780171
Anzai, A., Peng, X. & Van Essen, D. C. Neurons in monkey visual area V2 encode combinations of orientations. Nat. Neurosci. 10, 1313–1321 (2007).
pubmed: 17873872
Hegdé, J. & Van Essen, D. C. Selectivity for complex shapes in primate visual area V2. J. Neurosci. 20, RC61–RC61 (2000).
pubmed: 10684908 pmcid: 6772904
Dobbins, A., Zucker, S. W. & Cynader, M. S. Endstopped neurons in the visual cortex as a substrate for calculating curvature. Nature 329, 438–441 (1987).
pubmed: 3657960
Andermann, M. L. & Moore, C. I. A somatotopic map of vibrissa motion direction within a barrel column. Nat. Neurosci. 9, 543–551 (2006).
pubmed: 16547511
Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).
pubmed: 4121670 pmcid: 4121670
Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).
pubmed: 23685452 pmcid: 4412347
Ekstrom, A. D. et al. Cellular networks underlying human spatial navigation. Nature 425, 184–188 (2003).
pubmed: 12968182
Rolls, E. T. & Baylis, L. L. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J. Neurosci. 14, 5437–5452 (1994).
pubmed: 8083747 pmcid: 6577073
Schultz, W., Tremblay, L. & Hollerman, J. R. Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb. Cortex 10, 272–283 (2000).
pubmed: 10731222
Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).
pubmed: 15973409
Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R. & Fried, I. Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322, 96–101 (2008).
pubmed: 18772395 pmcid: 2650423
McCoy, A. N. & Platt, M. L. Risk-sensitive neurons in macaque posterior cingulate cortex. Nat. Neurosci. 8, 1220–1227 (2005).
pubmed: 16116449
Odegaard, B., Knight, R. T. & Lau, H. Should a few null findings falsify prefrontal theories of conscious perception? J. Neurosci. 37, 9593–9602 (2017).
pubmed: 5628405 pmcid: 5628405
Parvizi, J. & Kastner, S. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 21, 474–483 (2018).
pubmed: 29507407 pmcid: 6476542
Hill, J. et al. Similar patterns of cortical expansion during human development and evolution. Proc. Natl Acad. Sci. USA 107, 13135–13140 (2010).
pubmed: 20624964
Jacobs, B. et al. Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. Cereb. Cortex 11, 558–571 (2001).
pubmed: 11375917
García‐Cabezas, M. Á., Joyce, M. K. P., John, Y. J., Zikopoulos, B. & Barbas, H. Mirror trends of plasticity and stability indicators in primate prefrontal cortex. Eur. J. Neurosci. 46, 2392–2405 (2017).
pubmed: 28921934 pmcid: 5656436
Fox, K. C. R., Foster, B. L., Kucyi, A., Daitch, A. L. & Parvizi, J. Intracranial electrophysiology of the human default network. Trends Cogn. Sci. 22, 307–324 (2018).
pubmed: 29525387 pmcid: 5957519
Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R. & Christoff, K. The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage 111, 611–621 (2015).
pubmed: 25725466
Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N. & Andrews-Hanna, J. R. Mind-wandering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci. 17, 718–731 (2016).
pubmed: 27654862
Fox, K. C. R., Andrews-Hanna, J. R. & Christoff, K. The neurobiology of self-generated thought from cells to systems: integrating evidence from lesion studies, human intracranial electrophysiology, neurochemistry, and neuroendocrinology. Neuroscience 335, 134–150 (2016).
pubmed: 27544408
Antrobus, J. S., Singer, J. L. & Greenberg, S. Studies in the stream of consciousness: experimental enhancement and suppression of spontaneous cognitive processes. Percept. Mot. Skills 23, 399–417 (1966).
Mason, M. F. et al. Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 (2007).
pubmed: 17234951 pmcid: 1821121
Lilly, J. C. Mental effects of reduction of ordinary levels of physical stimuli on intact, healthy persons. Psychiatric Res. Rep. 5, 1–9 (1956).
Curot, J. et al. Memory scrutinized through electrical brain stimulation: a review of 80 years of experiential phenomena. Neurosci. Biobehav. Rev. 78, 161–177 (2017).
pubmed: 28445741
Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 16, 1348–1355 (2013).
pubmed: 23892552 pmcid: 3758404
Ezzyat, Y. et al. Direct brain stimulation modulates encoding states and memory performance in humans. Curr. Biol. 27, 1251–1258 (2017).
pubmed: 28434860
Ezzyat, Y. et al. Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nat. Commun. 9, 365 (2018).
pubmed: 29410414 pmcid: 5802791
Boly, M. et al. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. J. Neurosci. 37, 9603–9613 (2017).
pubmed: 5628406 pmcid: 5628406
Fried, I., Wilson, C. L., MacDonald, K. A. & Behnke, E. J. Electric current stimulates laughter. Nature 391, 650 (1998).
pubmed: 9490408
Inman, C. S. et al. Human amygdala stimulation effects on emotion physiology and emotional experience. Neuropsychologia https://doi.org/10.1016/j.neuropsychologia.2018.03.019 (2018).
Bosking, W. H. et al. Saturation in phosphene size with increasing current levels delivered to human visual cortex. J. Neurosci. 37, 7188–7197 (2017).
pubmed: 28652411 pmcid: 5546398
McIntyre, C. C. & Hahn, P. J. Network perspectives on the mechanisms of deep brain stimulation. Neurobiol. Dis. 38, 329–337 (2010).
pubmed: 19804831
Liu, S. & Parvizi, J. Cognitive refractory state caused by spontaneous epileptic high frequency oscillations in the human brain. Sci. Transl. Med. 11, eaax7830 (2019).
pubmed: 31619544
Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9, 195–207 (1999).
pubmed: 9931269
Fischl, B., Sereno, M. I., Tootell, R. B. & Dale, A. M. High‐resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284 (1999).
pubmed: 10619420 pmcid: 6873338
Papademetris, X. et al. BioImage Suite: an integrated medical image analysis suite: an update. Insight J. 2006, 209 (2006).
pubmed: 25364771 pmcid: 4213804
Dykstra, A. R. et al. Individualized localization and cortical surface-based registration of intracranial electrodes. NeuroImage 59, 3563–3570 (2012).
pubmed: 22155045
Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).
pubmed: 22248573 pmcid: 3685476
Semah, F. et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 51, 1256–1262 (1998).
pubmed: 9818842
Foster, B. L. & Parvizi, J. Direct cortical stimulation of human posteromedial cortex. Neurology 88, 685–691 (2017).
pubmed: 28100728 pmcid: 5317378
Agnew, W. F., Yuen, T. G. & McCreery, D. B. Morphologic changes after prolonged electrical stimulation of the cat’s cortex at defined charge densities. Exp. Neurol. 79, 397–411 (1983).
pubmed: 6822271
Babb, T. L. & Kupfer, W. Phagocytic and metabolic reactions to intracerebral electrical stimulation of rat brain. Exp. Neurol. 86, 183–197 (1984).
pubmed: 6489493
Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).
Fried, I. et al. Functional organization of human supplementary motor cortex studied by electrical stimulation. J. Neurosci. 11, 3656–3666 (1991).
pubmed: 1941101 pmcid: 6575551
Jarosz, A. F. & Wiley, J. What are the odds? A practical guide to computing and reporting Bayes factors. J. Problem Solving 7, 2 (2014).
Parvizi, J. et al. Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32, 14915–14920 (2012).
pubmed: 23100414 pmcid: 3517886

Auteurs

Kieran C R Fox (KCR)

Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA. kcrfox@stanford.edu.
School of Medicine, Stanford University, Stanford, CA, USA. kcrfox@stanford.edu.

Lin Shi (L)

Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

Sori Baek (S)

Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

Omri Raccah (O)

Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

Brett L Foster (BL)

Departments of Neurosurgery and Neuroscience, Baylor College of Medicine, Houston, TX, USA.

Srijani Saha (S)

Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

Daniel S Margulies (DS)

Centre National de la Recherche Scientifique (CNRS), UMR 7225, Frontlab, Institut du Cerveau et de la Moelle Épinière, Paris, France.

Aaron Kucyi (A)

Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

Josef Parvizi (J)

Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA. jparvizi@stanford.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH