Control the fate of human umbilical cord mesenchymal stem cells with dual-enzymatically cross-linked gelatin hydrogels for potential applications in nerve regeneration.


Journal

Journal of tissue engineering and regenerative medicine
ISSN: 1932-7005
Titre abrégé: J Tissue Eng Regen Med
Pays: England
ID NLM: 101308490

Informations de publication

Date de publication:
09 2020
Historique:
received: 15 04 2020
revised: 29 06 2020
accepted: 01 07 2020
pubmed: 8 7 2020
medline: 30 9 2021
entrez: 8 7 2020
Statut: ppublish

Résumé

Stem-cell-based therapy is a promising strategy to treat challenging neurological diseases, while its application is hindered primarily by the low viability and uncontrolled differentiation of stem cell. Hydrogel can be properly engineered to share similar characteristics with the target tissue, thus promoting cell viability and directing cell differentiation. In this study, we proposed a new dual-enzymatically cross-linked and injectable gelatin hydrogel for regulating survival, proliferation, and differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in a three-dimensional matrix. This injectable gelatin hydrogel was formed by oxidative coupling of gelatin-hydroxyphenyl acid conjugates catalyzed by hydrogen horseradish peroxidase (HRP) and choline oxidase (ChOx). Modulus and H

Identifiants

pubmed: 32633057
doi: 10.1002/term.3098
doi:

Substances chimiques

Biocompatible Materials 0
Cross-Linking Reagents 0
Hydrogels 0
Nerve Tissue Proteins 0
Water 059QF0KO0R
Gelatin 9000-70-8
Hydrogen Peroxide BBX060AN9V

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1261-1271

Informations de copyright

© 2020 John Wiley & Sons, Ltd.

Références

Ahuja, C. S., Wilson, J. R., Nori, S., Kotter, M. R., Druschel, C., Curt, A., & Fehlings, M. G. (2017). Traumatic spinal cord injury. Nature Reviews. Disease Primers, 3, 1-21.
Boido, M., Ghibaudi, M., Gentile, P., Favaro, E., Fusaro, R., & Tonda-Turo, C. (2019). Chitosan-based hydrogel to support the paracrine activity of mesenchymal stem cells in spinal cord injury treatment. Scientific Reports, 9, 1-16.
Broguiere, N., Isenmann, L., & Zenobi-Wong, M. (2016). Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks. Biomaterials, 99, 47-55. https://doi.org/10.1016/j.biomaterials.2016.04.036
Chaudhuri, O., Gu, L., Klumpers, D., Darnell, M., Bencherif, S. A., Weaver, J. C., … Duda, G. N. (2016). Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 15, 326-334. https://doi.org/10.1038/nmat4489
Ci, T., Chen, L., Yu, L., & Ding, J. (2014). Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel. Scientific Reports, 4, 5473.
Du, Y., Guo, J. L., Wang, J., Mikos, A. G., & Zhang, S. (2019). Hierarchically designed bone scaffolds: From internal cues to external stimuli. Biomaterials, 218, 119334. https://doi.org/10.1016/j.biomaterials.2019.119334
Edgar, J. M., Robinson, M., & Willerth, S. M. (2017). Fibrin hydrogels induce mixed dorsal/ventral spinal neuron identities during differentiation of human induced pluripotent stem cells. Acta Biomaterialia, 51, 237-245. https://doi.org/10.1016/j.actbio.2017.01.040
Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677-689. https://doi.org/10.1016/j.cell.2006.06.044
Fan, C.-G., Zhang, Q.-J., & Zhou, J.-R. (2011). Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Reviews and Reports, 7, 195-207. https://doi.org/10.1007/s12015-010-9168-8
Fan, L., Liu, C., Chen, X., Zou, Y., Zhou, Z., Lin, C., … Wang, Q. (2018). Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Applied Materials & Interfaces, 10, 17742-17755. https://doi.org/10.1021/acsami.8b05293
Führmann, T., Tam, R., Ballarin, B., Coles, B., Donaghue, I. E., Van Der Kooy, D., … Shoichet, M. (2016). Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials, 83, 23-36. https://doi.org/10.1016/j.biomaterials.2015.12.032
Gu, H., Yue, Z., Leong, W. S., Nugraha, B., & Tan, L. P. (2010). Control of in vitro neural differentiation of mesenchymal stem cells in 3D macroporous, cellulosic hydrogels. Regenerative Medicine, 5, 245-253. https://doi.org/10.2217/rme.09.89
Han, F., Zhu, C., Guo, Q., Yang, H., & Li, B. (2016). Cellular modulation by the elasticity of biomaterials. Journal of Materials Chemistry B, 4, 9-26. https://doi.org/10.1039/C5TB02077H
Huebsch, N., Lippens, E., Lee, K., Mehta, M., Koshy, S. T., Darnell, M. C., … Zhao, X. (2015). Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nature Materials, 14, 1269-1277. https://doi.org/10.1038/nmat4407
Ingavle, G., Vaidya, A., & Kale, V. (2019). Constructing three-dimensional microenvironments using engineered biomaterials for hematopoietic stem cell expansion. Tissue Eng. Part B-re., 25, 312-329. https://doi.org/10.1089/ten.teb.2018.0286
Jiang, F., Tang, Z., Zhang, Y., Ju, Y., Gao, H., Sun, N., … Zhang, W. J. B. S. (2019). Enhanced proliferation and differentiation of retinal progenitor cells through a self-healing injectable hydrogel. Biomaterials Science, 7, 2335-2347. https://doi.org/10.1039/C8BM01579A
Kandalam, S., Sindji, L., Delcroix, G. J.-R., Violet, F., Garric, X., André, E. M., … Guicheux, J. (2017). Pharmacologically active microcarriers delivering Bdnf within a hydrogel: novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement. Acta Biomaterialia, 49, 167-180. https://doi.org/10.1016/j.actbio.2016.11.030
Lee, S. H., Lee, Y., Chun, Y. W., Crowder, S. W., Young, P. P., Park, K. D., & Sung, H. J. (2014). In situ crosslinkable gelatin hydrogels for vasculogenic induction and delivery of mesenchymal stem cells. Advanced Functional Materials, 24, 6771-6781. https://doi.org/10.1002/adfm.201401110
Lee, Y., Bae, J. W., Oh, D. H., Park, K. M., Chun, Y. W., Sung, H.-J., & Park, K. D. (2013). In situ forming gelatin-based tissue adhesives and their phenolic content-driven properties. Journal of Materials Chemistry B, 1, 2407-2414. https://doi.org/10.1039/c3tb00578j
Lee, Y., Son, J. Y., Kang, J. I., Park, K. M., & Park, K. D. (2018). Hydrogen peroxide-releasing hydrogels for enhanced endothelial cell activities and neovascularization. ACS Applied Materials & Interfaces, 10, 18372-18379. https://doi.org/10.1021/acsami.8b04522
Li, X., Sun, Q., Li, Q., Kawazoe, N., & Chen, G. (2018). Functional hydrogels with tunable structures and properties for tissue engineering applications. Frontiers in Chemistry, 6, 499. https://doi.org/10.3389/fchem.2018.00499
Liang, K., Bae, K. H., & Kurisawa, M. (2019). Recent advances in the design of injectable hydrogels for stem cell-based therapy. Journal of Materials Chemistry B, 7, 3775-3791. https://doi.org/10.1039/C9TB00485H
Ma, Y., Lin, M., Huang, G., Li, Y., Wang, S., Bai, G., … Xu, F. (2018). 3D spatiotemporal mechanical microenvironment: a hydrogel-based platform for guiding stem cell fate. Advanced Materials, 30, 1705911. https://doi.org/10.1002/adma.201705911
Nichols, E., Szoeke, C. E., Vollset, S. E., Abbasi, N., Abd-Allah, F., Abdela, J., … Asgedom, S. W. (2019). Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, 18, 88-106. https://doi.org/10.1016/S1474-4422(18)30403-4
Noureddini, M., Verdi, J., Mortazavi-Tabatabaei, S. A., Sharif, S., Azimi, A., Keyhanvar, P., & Shoae-Hassani, A. (2012). Human endometrial stem cell neurogenesis in response to Ngf and bfgf. Cell Biology International, 36, 961-966. https://doi.org/10.1042/CBI20110610
Pek, Y. S., Wan, A. C., & Ying, J. Y. (2010). The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials, 31, 385-391. https://doi.org/10.1016/j.biomaterials.2009.09.057
Rubiano, A. M., Carney, N., Chesnut, R., & Puyana, J. C. (2015). Global neurotrauma research challenges and opportunities. Nature, 527, S193-S197. https://doi.org/10.1038/nature16035
Seliktar, D. (2012). Designing cell-compatible hydrogels for biomedical applications. Science, 336, 1124-1128. https://doi.org/10.1126/science.1214804
Shi, K., Wang, Y.-L., Qu, Y., Liao, J.-F., Chu, B.-Y., Zhang, H.-P., … Qian, Z.-Y. (2016). Synthesis, characterization, and application of reversible Pdlla-Peg-Pdlla copolymer thermogels in vitro and in vivo. Scientific Reports, 6, 19077. https://doi.org/10.1038/srep19077
Tang, Z., Jiang, F., Zhang, Y., Zhang, Y., Huang, X., Wang, Y., … Luo, M. (2019). Mussel-inspired injectable hydrogel and its counterpart for actuating proliferation and neuronal differentiation of retinal progenitor cells. Biomaterials, 194, 57-72. https://doi.org/10.1016/j.biomaterials.2018.12.015
Tao, H., Rao, R., & Ma, D. D. (2005). Cytokine-induced stable neuronal differentiation of human bone marrow mesenchymal stem cells in a serum/feeder cell-free condition. Development, Growth & Differentiation, 47, 423-433. https://doi.org/10.1111/j.1440-169X.2005.00810.x
Tseng, T. C., Tao, L., Hsieh, F. Y., Wei, Y., Chiu, I. M., & Hsu, S. H. (2015). An injectable, self-healing hydrogel to repair the central nervous system. Advanced Materials, 27, 3518-3524. https://doi.org/10.1002/adma.201500762
Wang, L., Li, J., Zhang, D., Ma, S., Zhang, J., Gao, F., … Yao, M. (2020). Dual-enzymatically crosslinked and injectable hyaluronic acid hydrogels for potential application in tissue engineering. RSC Advances, 10, 2870-2876. https://doi.org/10.1039/C9RA09531D
Wang, L.-S., Boulaire, J., Chan, P. P., Chung, J. E., & Kurisawa, M. (2010a). The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials, 31, 8608-8616. https://doi.org/10.1016/j.biomaterials.2010.07.075
Wang, L.-S., Chung, J. E., Chan, P. P.-Y., & Kurisawa, M. (2010b). Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials, 31, 1148-1157. https://doi.org/10.1016/j.biomaterials.2009.10.042
Wang, X., Ma, S., Meng, N., Yao, N., Zhang, K., Li, Q., … Song, J. (2016). Resveratrol exerts dosage-dependent effects on the self-renewal and neural differentiation of hUC-MSCs. Molecules and Cells, 39(5), 418.
Yao, M., Chen, Y., Zhang, J., Gao, F., Ma, S., & Guan, F. (2019b). Chitosan-based thermosensitive composite hydrogel enhances the therapeutic efficacy of human umbilical cord MSC in TBI rat model. Materials Today Chemistry, 14, 100192. https://doi.org/10.1016/j.mtchem.2019.08.011
Yao, M., Gao, F., Xu, R., Zhang, J., Chen, Y., & Guan, F. (2019c). A dual-enzymatically cross-linked injectable gelatin hydrogel loaded with BMSC improves neurological function recovery of traumatic brain injury in rats. Biomaterials Science, 7, 4088-4098. https://doi.org/10.1039/C9BM00749K
Yao, M., Zhang, J., Gao, F., Chen, Y., Ma, S., Zhang, K., … Guan, F. (2019a). New BMSC-laden gelatin hydrogel formed in situ by dual-enzymatic cross-linking accelerates dermal wound healing. ACS Omega, 4, 8334-8340. https://doi.org/10.1021/acsomega.9b00878
Zhang, J., Cheng, T., Chen, Y., Gao, F., Guan, F., & Yao, M.-H. (2020). Chitosan-based thermosensitive scaffold loaded with bone marrow derived Mesenchymal stem cells promotes the motor function recovery in spinal cord injured mice. Biomedical Materials, 15(3), 035020.

Auteurs

Jinrui Li (J)

School of Life Science, Zhengzhou University, Zhengzhou, P. R. China.

Feng Gao (F)

School of Life Science, Zhengzhou University, Zhengzhou, P. R. China.

Shanshan Ma (S)

School of Life Science, Zhengzhou University, Zhengzhou, P. R. China.

Yanting Zhang (Y)

School of Life Science, Zhengzhou University, Zhengzhou, P. R. China.

Junni Zhang (J)

School of Life Science, Zhengzhou University, Zhengzhou, P. R. China.

Fangxia Guan (F)

School of Life Science, Zhengzhou University, Zhengzhou, P. R. China.

Minghao Yao (M)

School of Life Science, Zhengzhou University, Zhengzhou, P. R. China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH