Implementation of a multiple-fraction concatenation strategy in an online two-dimensional high-/low-pH reversed-phase/reversed-phase liquid chromatography platform for qualitative and quantitative shotgun proteomic analyses.
Journal
Journal of mass spectrometry : JMS
ISSN: 1096-9888
Titre abrégé: J Mass Spectrom
Pays: England
ID NLM: 9504818
Informations de publication
Date de publication:
12 Jun 2020
12 Jun 2020
Historique:
revised:
05
06
2020
received:
06
05
2020
accepted:
08
06
2020
pubmed:
8
7
2020
medline:
8
7
2020
entrez:
8
7
2020
Statut:
aheadofprint
Résumé
Multidimensional liquid chromatography is the mainstay separation technique used for shotgun proteomic analyses. The application of a multiple-fraction concatenation (MFC) strategy can result in a more disperse and consistent peptide elution profile across different fractions, when compared with a conventional strategy. Herein, we present the first automated online RP-RP platform implementing an MFC strategy to facilitate robust, unattended, routine proteomic analyses. The improved duty cycle utilization of the MFC strategy led to an increase of 9% in the separation space occupancy and increases of approximately 10% in the identification of both proteins and peptides. The peptides uniquely identified by the MFC strategy were significantly biased toward those of acidic nature, with increased precursor signals leading to improved MS/MS spectral quality and enhanced acidic peptide identification. These improvements in qualitative analysis using the MFC strategy were also extended to quantitative analysis. When the acquired proteome was quantified with a normalized spectral abundance factor, the additionally acquired acidic peptides were a critical factor leading to enhanced reproducibility of quantitation using the MFC strategy. With merits of superior qualitative and quantitative characteristics over the conventional strategy, the MFC strategy appears to be a highly amenable technique for enhancing the separation capacity for routine proteomic analyses.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e4591Subventions
Organisme : Hong Kong Research Grants Council
ID : 17304919
Organisme : Hong Kong Research Grants Council
ID : 17305117
Organisme : Hong Kong Research Grants Council
ID : 17318616
Informations de copyright
© 2020 John Wiley & Sons, Ltd.
Références
Xie F, Smith RD, Shen Y. Advanced proteomic liquid chromatography. J Chromatogr A. 2012;1261:78-90.
Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A. 2000;97(17):9390-9395.
Guiochon G, Marchetti N, Mriziq K, Shalliker RA. Implementations of two-dimensional liquid chromatography. J Chromatogr A. 2008;1189(1-2):109-168.
Stoll DR, Li X, Wang X, Carr PW, Porter SEG, Rutan SC. Fast, comprehensive two-dimensional liquid chromatography. J Chromatogr A. 2007;1168(1-2):3-43.
Gilar M, Olivova P, Daly AE, Gebler JC. Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem. 2005;77(19):6426-6434.
Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci. 2005;28(14):1694-1703.
Song C, Ye M, Han G, et al. Reversed-phase-reversed-phase liquid chromatography approach with high orthogonality for multidimensional separation of phosphopeptides. Anal Chem. 2010;82(1):53-56.
Wang Y, Yang F, Gritsenko MA, et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics. 2011;11(10):2019-2026.
Dwivedi RC, Spicer V, Harder M, et al. Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics. Anal Chem. 2008;80(18):7036-7042.
Bagag A, Jault JM, Sidahmed-Adrar N, Réfrégiers M, Giuliani A, Le Naour F. Characterization of Hydrophobic Peptides in the Presence of Detergent by Photoionization Mass Spectrometry. PLoS ONE. 2013;8(11):e79033. https://doi.org/10.1371/journal.pone.0079033
Peterson A, Hohmann L, Huang L, Kim B, Eng JK, Martin DB. Analysis of RP-HPLC loading conditions for maximizing peptide identifications in shotgun proteomics. J Proteome Res. 2009;8(8):4161-4168.
Malerod H, Lundanes E, Greibrokk T. Recent advances in on-line multidimensional liquid chromatography. Anal. Methods. 2010;2:110-122.
Kong RP, Siu SO, Lee SS, Lo C, Chu IK. Development of online high-/low-pH reversed-phase-reversed-phase two-dimensional liquid chromatography for shotgun proteomics: a reversed-phase-strong cation exchange-reversed-phase approach. J Chromatogr A. 2011;1218(23):3681-3688.
Washburn MP, Wolters D, Yates JR III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19(3):242-247.
Zhou F, Sikorski TW, Ficarro SB, Webber JT, Marto JA. Online nanoflow reversed phase-strong anion exchange-reversed phase liquid chromatography-tandem mass spectrometry platform for efficient and in-depth proteome sequence analysis of complex organisms. Anal Chem. 2011;83(18):6996-7005.
Lam MPY, Law CH, Quan Q, Zhao Y, Chu IK. Fully automatable multidimensional reversed-phase liquid chromatography with online tandem mass spectrometry. Methods Mol Biol. 2014;1156:39-51.
Law HCH, Kong RPW, Szeto SSW, et al. A versatile reversed phase-strong cation exchange-reversed phase (RP-SCX-RP) multidimensional liquid chromatography platform for qualitative and quantitative shotgun proteomics. Analyst. 2015;140(4):1237-1252.
Thakur SS, Geiger T, Chatterjee B, Bandilla P, Fröhlich F, Cox J, Mann M. Deep and Highly Sensitive Proteome Coverage by LC-MS/MS Without Prefractionation. Molecular & Cellular Proteomics. 2011;10 (8):M110.003699.
Ghaemmaghami S, Huh WK, Bower K, et al. Global analysis of protein expression in yeast. Nature. 2003;425(6959):737-741.
Tang WH, Shilov IV, Seymour SL. Nonlinear fitting method for determining local false discovery rates from decoy database searches. J Proteome Res. 2008;7(9):3661-3667.
Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res. 2006;5(9):2339-2347.
Baumgart S, Lindner Y, Kuhne R, Oberemm A, Wenschuh H, Krause E. The contributions of specific amino acid side chains to signal intensities of peptides in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2004;18(8):863-868.
Soga T, Heiger DN. Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem. 2000;72(6):1236-1241.