TLR2 and endosomal TLR-mediated secretion of IL-10 and immune suppression in response to phagosome-confined Listeria monocytogenes.


Journal

PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921

Informations de publication

Date de publication:
07 2020
Historique:
received: 08 01 2020
accepted: 12 05 2020
entrez: 8 7 2020
pubmed: 8 7 2020
medline: 21 8 2020
Statut: epublish

Résumé

Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from phagosomes and induces a robust adaptive immune response in mice, while mutants unable to escape phagosomes fail to induce a robust adaptive immune response and suppress the immunity to wildtype bacteria when co-administered. The capacity to suppress immunity can be reversed by blocking IL-10. In this study, we sought to understand the host receptors that lead to secretion of IL-10 in response to phagosome-confined L. monocytogenes (Δhly), with the ultimate goal of generating strains that fail to induce IL-10. We conducted a transposon screen to identify Δhly L. monocytogenes mutants that induced significantly more or less IL-10 secretion in bone marrow-derived macrophages (BMMs). A transposon insertion in lgt, which encodes phosphatidylglycerol-prolipoprotein diacylglyceryl transferase and is essential for the formation of lipoproteins, induced significantly reduced IL-10 secretion. Mutants with transposon insertions in pgdA and oatA, which encode peptidoglycan N-acetylglucosamine deacetylase and O-acetyltransferase, are sensitive to lysozyme and induced enhanced IL-10 secretion. A ΔhlyΔpgdAΔoatA strain was killed in BMMs and induced enhanced IL-10 secretion that was dependent on Unc93b1, a trafficking molecule required for signaling of nucleic acid-sensing TLRs. These data revealed that nucleic acids released by bacteriolysis triggered endosomal TLR-mediated IL-10 secretion. Secretion of IL-10 in response to infection with the parental strain was mostly TLR2-dependent, while IL-10 secretion in response to lysozyme-sensitive strains was dependent on TLR2 and Unc93b1. In mice, the IL-10 response to vacuole-confined L. monocytogenes was also dependent on TLR2 and Unc93b1. Co-administration of Δhly and ΔactA resulted in suppressed immunity in WT mice, but not in mice with mutations in Unc93b1. These data revealed that secretion of IL-10 in response to L. monocytogenes infection in vitro is mostly TLR2-dependent and immune suppression by phagosome-confined bacteria in vivo is mostly dependent on endosomal TLRs.

Identifiants

pubmed: 32634175
doi: 10.1371/journal.ppat.1008622
pii: PPATHOGENS-D-20-00037
pmc: PMC7340287
doi:

Substances chimiques

IL10 protein, mouse 0
Tlr2 protein, mouse 0
Toll-Like Receptor 2 0
Toll-Like Receptors 0
Interleukin-10 130068-27-8

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1008622

Subventions

Organisme : NIAID NIH HHS
ID : P01 AI063302
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI027655
Pays : United States

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

J Exp Med. 1988 Apr 1;167(4):1459-71
pubmed: 2833557
Int J Biochem Cell Biol. 2008;40(4):586-91
pubmed: 17468031
Immunology. 1990 Sep;71(1):107-12
pubmed: 2120126
PLoS One. 2013 Dec 12;8(12):e80743
pubmed: 24349012
Nat Commun. 2016 Jan 05;7:10198
pubmed: 26729647
Nat Rev Immunol. 2004 Oct;4(10):812-23
pubmed: 15459672
J Bacteriol. 2016 Jun 13;198(13):1847-56
pubmed: 27114466
Microbiol Mol Biol Rev. 2007 Jun;71(2):377-97
pubmed: 17554049
Adv Exp Med Biol. 2013;785:1-8
pubmed: 23456832
J Biol Chem. 2015 Feb 6;290(6):3209-22
pubmed: 25505250
Nat Rev Immunol. 2010 Mar;10(3):170-81
pubmed: 20154735
Infect Immun. 1994 Dec;62(12):5608-13
pubmed: 7960143
Immunity. 2005 Apr;22(4):507-17
pubmed: 15845454
Sci Immunol. 2017 Oct 6;2(16):
pubmed: 28986418
J Biol Chem. 1994 Aug 5;269(31):19701-6
pubmed: 8051048
Infect Immun. 2011 Feb;79(2):548-61
pubmed: 20974828
J Bacteriol. 2009 Jun;191(12):3950-64
pubmed: 19376879
Front Immunol. 2020 Feb 21;11:269
pubmed: 32153579
J Immunol. 2008 May 1;180(9):5771-7
pubmed: 18424693
J Bacteriol. 2014 Nov;196(21):3756-67
pubmed: 25157076
Nature. 1999 Oct 21;401(6755):811-5
pubmed: 10548109
J Exp Med. 2003 Jan 6;197(1):7-17
pubmed: 12515809
Infect Immun. 2011 Sep;79(9):3596-606
pubmed: 21768286
Mol Microbiol. 1993 Apr;8(1):143-57
pubmed: 8388529
PLoS Pathog. 2007 Mar;3(3):e51
pubmed: 17397264
PLoS Pathog. 2011 Mar;7(3):e1001326
pubmed: 21455492
J Immunol. 2006 Dec 1;177(11):7551-8
pubmed: 17114424
Nat Rev Immunol. 2013 Jun;13(6):453-60
pubmed: 23681101
PLoS Pathog. 2009 Sep;5(9):e1000568
pubmed: 19730694
J Bacteriol. 2007 Jan;189(2):313-24
pubmed: 17041050
Nature. 2008 Mar 13;452(7184):234-8
pubmed: 18305481
Trends Immunol. 2012 Oct;33(10):488-95
pubmed: 22677184
J Immunol. 1987 Apr 1;138(7):2266-71
pubmed: 3104455
J Immunol. 2008 Aug 1;181(3):2028-35
pubmed: 18641340
J Immunol. 2004 Sep 1;173(5):3392-7
pubmed: 15322203
Nat Immunol. 2006 Feb;7(2):156-64
pubmed: 16415873
Curr Opin Pharmacol. 2018 Aug;41:128-136
pubmed: 29890457
Cell Host Microbe. 2009 Jul 23;6(1):10-21
pubmed: 19616762
PLoS Pathog. 2016 Jun 13;12(6):e1005708
pubmed: 27295349
Infect Immun. 2006 Nov;74(11):6387-97
pubmed: 16954391
Adv Immunol. 2012;113:135-56
pubmed: 22244582
Elife. 2013 Feb 19;2:e00291
pubmed: 23426999
PLoS One. 2010 Sep 22;5(9):e12871
pubmed: 20877569
Immunity. 2009 Dec 18;31(6):847-9
pubmed: 20064441
Int Immunol. 2014 Oct;26(10):563-73
pubmed: 24860120
Microbes Infect. 2007 Aug;9(10):1208-15
pubmed: 17719259
Cell Rep. 2018 May 29;23(9):2582-2594
pubmed: 29847790
J Exp Med. 1989 Dec 1;170(6):2141-6
pubmed: 2511268
Dev Comp Immunol. 2014 May;44(1):44-9
pubmed: 24291017
Nat Commun. 2017 Dec 21;8(1):2246
pubmed: 29269769
J Immunol. 2006 Aug 15;177(4):2565-74
pubmed: 16888018
J Immunol. 1997 Mar 1;158(5):2259-67
pubmed: 9036973
J Bacteriol. 2002 Aug;184(15):4177-86
pubmed: 12107135
Mol Microbiol. 2000 Jan;35(2):312-23
pubmed: 10652092
J Biol Chem. 2012 Apr 13;287(16):13170-81
pubmed: 22303020
Microbes Infect. 2011 Apr;13(4):350-8
pubmed: 21172450
Nature. 1970 Nov 28;228(5274):855-6
pubmed: 5477011

Auteurs

Brittney N Nguyen (BN)

Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America.

Alfredo Chávez-Arroyo (A)

Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America.

Mandy I Cheng (MI)

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.

Maria Krasilnikov (M)

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.

Alexander Louie (A)

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.

Daniel A Portnoy (DA)

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.
Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH