The actin nucleator Cobl organises the terminal web of enterocytes.
Actins
/ metabolism
Animals
Blotting, Western
Cell Membrane
/ metabolism
Cryoelectron Microscopy
/ methods
Enterocytes
/ metabolism
Intestinal Mucosa
/ metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Microfilament Proteins
/ physiology
Microscopy, Electron, Scanning
/ methods
Microvilli
/ physiology
Real-Time Polymerase Chain Reaction
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
07 07 2020
07 07 2020
Historique:
received:
29
07
2019
accepted:
15
05
2020
entrez:
9
7
2020
pubmed:
9
7
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Brush borders of intestinal epithelial cells are mandatory for nutrient uptake. Yet, which actin nucleators are crucial for forming the F-actin bundles supporting microvilli and the actin filaments of the terminal web, in which microvilli are rooted, is unknown. We show that mice lacking the actin nucleator Cobl surprisingly did not display reduced microvilli densities or changes in microvillar F-actin bundles or microvilli diameter but particularly in the duodenum displayed increased microvillar length. Interestingly, Cobl-deficient mice furthermore showed a significant widening of the terminal web. Quantitative analyses of high-resolution cryo-scanning electron microscopy (EM) of deep-etched duodenum samples revealed that Cobl is specifically important for the formation of fine filaments in the central terminal web that connect the apical structure of the terminal web underlying the plasma membrane, the microvilli rootlets and the basal structure of the terminal web with each other. Thus, the actin nucleator Cobl is critically involved in generating one of the cellular structures of the brush border-decorated apical cortex of enterocytes representing the absorptive intestinal surface.
Identifiants
pubmed: 32636403
doi: 10.1038/s41598-020-66111-9
pii: 10.1038/s41598-020-66111-9
pmc: PMC7341751
doi:
Substances chimiques
Actins
0
Cobl protein, mouse
0
Microfilament Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
11156Références
Ruemmele, F. M., Schmitz, J. & Goulet, O. Microvillous inclusion disease (microvillous atrophy). Orphanet J. Rare Dis. 1, 22 (2006).
pubmed: 16800870
pmcid: 1523325
Müller, T. et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat. Genet. 40, 1163–1165 (2008).
pubmed: 18724368
Sauvanet, C., Wayt, J., Pelaseyed, T. & Bretscher, A. Structure, regulation, and functional diversity of microvilli on the apical domain of epithelial cells. Annu. Rev. Cell Dev. Biol. 31, 593–621 (2015).
pubmed: 26566117
Crawley, S. W., Mooseker, M. S. & Tyska, M. J. Shaping the intestinal brush border. J. Cell Biol. 207, 441–451 (2014).
pubmed: 25422372
pmcid: 4242837
Pelaseyed, T. & Bretscher, A. Regulation of actin-based apical structures on epithelial cells. J. Cell Sci. 131(20), jcs221853 (2018).
pubmed: 30333133
pmcid: 6215389
Ferrer, R., Planas, J. M. & Moreto, M. Cell apical surface area in enterocytes from chicken small and large intestine during development. Poult. Sci. 74, 1995–2002 (1995).
pubmed: 8825590
Grimm-Günter, E. M. et al. Plastin 1 binds to keratin and is required for terminal web assembly in the intestinal epithelium. Mol. Biol. Cell. 20, 2549–2562 (2009).
pubmed: 19321664
pmcid: 2682596
Hirokawa, N. & Heuser, J. E. Quick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells. J. Cell Biol. 91, 399–409 (1981).
pubmed: 7198124
Hirokawa, N., Tilney, L. G., Fujiwara, K. & Heuser, J. E. Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. J. Cell Biol. 94, 425–443 (1982).
pubmed: 7202010
Zhang, D. S. et al. Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia. Nature. 481, 520–524 (2012).
pubmed: 22246323
pmcid: 3267870
Fettiplace, R. & Kim, K. X. The physiology of mechanoelectrical transduction channels in hearing. Physiol. Rev. 94, 951–986 (2014).
pubmed: 24987009
pmcid: 4101631
Crawley, S. W. et al. Intestinal brush border assembly driven by protocadherin-based intermicrovillar adhesion. Cell. 157, 433–446 (2014).
pubmed: 24725409
pmcid: 3992856
Bretscher, A. & Weber, K. Villin: the major microfilament-associated protein of the intestinal microvillus. Proc. Natl. Acad. Sci. USA 76, 2321–2325 (1979).
pubmed: 287075
Bretscher, A. & Weber, K. Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J. Cell Biol. 86, 335–340 (1980).
pubmed: 6998986
Bartles, J. R., Zheng, L., Li, A., Wierda, A. & Chen, B. Small espin: a third actin-bundling protein and potential forked protein ortholog in brush border microvilli. J. Cell Biol. 143, 107–119 (1998).
pubmed: 9763424
pmcid: 2132824
Revenu, C. et al. A new role for the architecture of microvillar actin bundles in apical retention of membrane proteins. Mol. Biol. Cell. 23, 324–336 (2012).
pubmed: 22114352
pmcid: 3258176
Croce, A. et al. A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nat. Cell Biol. 6, 1173–1179 (2004).
pubmed: 15558032
Tocchetti, A. et al. Loss of the actin remodeler Eps8 causes intestinal defects and improved metabolic status in mice. PLoS One. 5, e9468, https://doi.org/10.1371/journal.pone.0009468 (2010).
doi: 10.1371/journal.pone.0009468
pubmed: 20209148
pmcid: 2830459
Saotome, I., Curto, M. & McClatchey, A. I. Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev. Cell. 6, 855–864 (2004).
pubmed: 15177033
Zhou, K., Sumigray, K. D. & Lechler, T. The Arp2/3 complex has essential roles in vesicle trafficking and transcytosis in the mammalian small intestine. Mol. Biol. Cell. 26, 1995–2004 (2015).
pubmed: 25833710
pmcid: 4472011
Ahuja, R. et al. Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell. 131, 337–350 (2007).
pubmed: 17956734
pmcid: 2507594
Qualmann, B. & Kessels, M. M. New players in actin polymerization-WH2-domain-containing actin nucleators. Trends Cell Biol. 19, 276–285 (2009).
pubmed: 19406642
Grega-Larson, N. E., Crawley, S. W., Erwin, A. L. & Tyska, M. J. Cordon bleu promotes the assembly of brush border microvilli. Mol. Biol. Cell. 26, 3803–3815 (2015).
pubmed: 26354418
pmcid: 4626065
Schüler, S. et al. Ciliated sensory hair cell formation and function require the F-BAR protein syndapin I and the WH2 domain-based actin nucleator Cobl. J. Cell Sci. 126, 196–208 (2013).
pubmed: 23203810
Wayt, J. & Bretscher, A. Cordon Bleu serves as a platform at the basal region of microvilli, where it regulates microvillar length through its WH2 domains. Mol. Biol. Cell. 25, 2817–2827 (2014).
pubmed: 25031432
pmcid: 4161516
Haag, N. et al. The actin nucleator Cobl is critical for centriolar positioning, postnatal planar cell polarity refinement, and function of the cochlea. Cell Rep. 24, 2418–2431 (2018).
pubmed: 30157434
Haag, N. et al. The actin nucleator Cobl is crucial for Purkinje cell development and works in close conjunction with the F-actin binding protein Abp1. J. Neurosci. 32, 17842–17856 (2012).
pubmed: 23223303
pmcid: 6621670
van der Flier, L. G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260 (2009).
pubmed: 18808327
pmcid: 18808327
Clevers, H. The intestinal crypt, a prototype stem cell compartment. Cell. 154, 274–284 (2013).
pubmed: 23870119
Schwintzer, L. et al. The functions of the actin nucleator Cobl in cellular morphogenesis critically depend on syndapin I. EMBO J. 30, 3147–3159 (2011).
pubmed: 21725280
pmcid: 3160182
Izadi, M. et al. Cobl-like promotes actin filament formation and dendritic branching using only a single WH2 domain. J. Cell Biol. 217, 211–230 (2018).
pubmed: 29233863
pmcid: 5748978
Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell. 97, 221–231 (1999).
pubmed: 10219243
Uruno, T. et al. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat. Cell Biol. 3, 259–266 (2001).
pubmed: 11231575
Weaver, A. M. et al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr. Biol. 11, 370–374 (2001).
pubmed: 11267876
Zuchero, J. B., Coutts, A. S., Quinlan, M. E., Thangue, N. B. & Mullins, R. D. p53-cofactor JMY is a multifunctional actin nucleation factor. Nat. Cell Biol. 11, 451–459 (2009).
pubmed: 19287377
pmcid: 2763628
Mooseker, M. S. & Tilney, L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J. Cell Biol. 67, 725–743 (1975).
pubmed: 1202021
Bretscher, A. & Weber, K. Localization of actin and microfilament-associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. J. Cell Biol. 79, 839–845 (1978).
pubmed: 365871
Glenney, J. R. Jr, Glenney, P., Osborn, M. & Weber, K. An F-actin- and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin. Cell. 28, 843–854 (1982).
pubmed: 7201352
Kühne, H. et al. Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression. Nutr. Res. 36, 184–192 (2016).
pubmed: 26606857
Courjaret, R. et al. The Ca
Suarez, C. & Kovar, D. R. Internetwork competition for monomers governs actin cytoskeleton organization. Nat. Rev. Mol. Cell. Biol. 17, 799–810 (2016).
pubmed: 27625321
pmcid: 5125073
Loomis, P. A. et al. Espin cross-links cause the elongation of microvillus-type parallel actin bundles in vivo. J. Cell Biol. 163, 1045–1055 (2003).
pubmed: 14657236
pmcid: 2173610
Hou, W. et al. The actin nucleator Cobl is controlled by calcium and calmodulin. PLoS Biol. 13, e1002233, https://doi.org/10.1371/journal.pbio.1002233 (2015).
Kessels, M. M., Engqvist-Goldstein, Å. E. Y. & Drubin, D. G. Association of mouse actin-binding protein 1 (mAbp1/SH3P7), an Src kinase target, with dynamic regions of the cortical actin cytoskeleton in response to Rac1 activation. Mol. Biol. Cell. 11, 393–412 (2000).
pubmed: 10637315
pmcid: 14781
Postema, M. M., Grega-Larson, N. E., Meenderink, L. M. & Tyska, M. J. PACSIN2-dependent apical endocytosis regulates the morphology of epithelial microvilli. Mol. Biol. Cell 30, 2515–2526 (2019).
pubmed: 31390291
pmcid: 6743356
Qualmann, B., Roos, J., DiGregorio, P. J. & Kelly, R. B. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol. Cell. 10, 501–513 (1999).
pubmed: 9950691
pmcid: 25183