A novel humanized mouse model to study the function of human cutaneous memory T cells in vivo in human skin.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 07 2020
Historique:
received: 20 05 2019
accepted: 01 06 2020
entrez: 9 7 2020
pubmed: 9 7 2020
medline: 15 12 2020
Statut: epublish

Résumé

Human skin contains a population of memory T cells that supports tissue homeostasis and provides protective immunity. The study of human memory T cells is often restricted to in vitro studies and to human PBMC serving as primary cell source. Because the tissue environment impacts the phenotype and function of memory T cells, it is crucial to study these cells within their tissue. Here we utilized immunodeficient NOD-scid IL2rγ

Identifiants

pubmed: 32636404
doi: 10.1038/s41598-020-67430-7
pii: 10.1038/s41598-020-67430-7
pmc: PMC7341892
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

11164

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI127726
Pays : United States

Références

Bos, J. D. et al. Predominance of ‘memory’ T cells (CD4+, CDw29+) over ‘naive’ T cells (CD4+, CD45R+) in both normal and diseased human skin. Arch. Dermatol. Res. 281, 24–30 (1989).
pubmed: 2525009
Clark, R. A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. Baltim. Md 1950(176), 4431–4439 (2006).
Nestle, F. O., Di Meglio, P., Qin, J.-Z. & Nickoloff, B. J. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9, 679–691 (2009).
pubmed: 19763149 pmcid: 2947825
Di Meglio, P., Perera, G. K. & Nestle, F. O. The multitasking organ: recent insights into skin immune function. Immunity 35, 857–869 (2011).
pubmed: 22195743
Klicznik, M. M., Szenes-Nagy, A. B., Campbell, D. J. & Gratz, I. K. Taking the lead - how keratinocytes orchestrate skin T cell immunity. Immunol. Lett. 200, 43–51 (2018).
pubmed: 29969603 pmcid: 7032065
Gebhardt, T., Palendira, U., Tscharke, D. C. & Bedoui, S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol. Rev. 283, 54–76 (2018).
pubmed: 29664571
Masopust, D. & Soerens, A. G. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. 37, 521–546 (2019).
pubmed: 30726153 pmcid: 7175802
Snyder, M. E. et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 4, eaav5581 (2019).
pubmed: 30850393 pmcid: 6435356
Park, S. L. et al. Tissue-resident memory CD8+ T cells promote melanoma-immune equilibrium in skin. Nature 565, 366–371 (2019).
pubmed: 30598548
Campbell, J. J., Clark, R. A., Watanabe, R. & Kupper, T. S. Sézary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood 116, 767–771 (2010).
pubmed: 20484084 pmcid: 2918332
Clark, R. A. et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci. Transl. Med. 4, 117ra7 (2012).
pubmed: 22261031 pmcid: 3373186
Casey, K. A. et al. Antigen independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. Baltim. Md 1950(188), 4866–4875 (2012).
Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).
pubmed: 19305395 pmcid: 19305395
Glennie, N. D. et al. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. J. Exp. Med. 212, 1405–1414 (2015).
pubmed: 26216123 pmcid: 4548053
Mackay, L. K. et al. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).
pubmed: 24162776 pmcid: 24162776
Park, C. O. et al. Staged development of long-lived T-cell receptor αβ TH17 resident memory T-cell population to Candida albicans after skin infection. J. Allergy Clin. Immunol. 142, 647–662 (2018).
pubmed: 29128674
Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).
pubmed: 26682984 pmcid: 26682984
Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).
pubmed: 28219080 pmcid: 5509051
Hu, W. & Pasare, C. Location, location, location: tissue-specific regulation of immune responses. J. Leukoc. Biol. 94, 409–421 (2013).
pubmed: 23825388 pmcid: 3747123
McCully, M. L. et al. Epidermis instructs skin homing receptor expression in human T cells. Blood 120, 4591–4598 (2012).
pubmed: 23043070 pmcid: 3790942
Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).
pubmed: 28930685 pmcid: 5646692
Gudjonsson, J. E., Johnston, A., Dyson, M., Valdimarsson, H. & Elder, J. T. Mouse models of psoriasis. J. Investig. Dermatol. 127, 1292–1308 (2007).
pubmed: 17429444
Shay, T. et al. Conservation and divergence in the transcriptional programs of the human and mouse immune systems. Proc. Natl. Acad. Sci. 110, 2946–2951 (2013).
pubmed: 23382184
Perlman, R. L. Mouse models of human disease. Evol. Med. Public Health 2016, 170–176 (2016).
pubmed: 27121451 pmcid: 4875775
Watanabe, R. et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl. Med. 7, 279ra39 (2015).
pubmed: 25787765 pmcid: 4425193
King, M. A. et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin. Exp. Immunol. 157, 104–118 (2009).
pubmed: 19659776 pmcid: 2710598
Boyman, O. et al. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J. Exp. Med. 199, 731–736 (2004).
pubmed: 14981113 pmcid: 2213300
Racki, W. J. et al. NOD-scid IL2rgamma(null) mouse model of human skin transplantation and allograft rejection. Transplantation 89, 527–536 (2010).
pubmed: 20134397 pmcid: 2901915
Sanchez Rodriguez, R. et al. Memory regulatory T cells reside in human skin. J. Clin. Invest. 124, 1027–1036 (2014).
pubmed: 24509084 pmcid: 3934172
Carretero, M. et al. Differential features between chronic skin inflammatory diseases revealed in skin-humanized psoriasis and atopic dermatitis mouse models. J. Investig. Dermatol. 136, 136–145 (2016).
pubmed: 26763433
Guerrero-Aspizua, S. et al. Development of a bioengineered skin-humanized mouse model for psoriasis. Am. J. Pathol. 177, 3112–3124 (2010).
pubmed: 20971736 pmcid: 2993308
Boyce, S. T. et al. Skin anatomy and antigen expression after burn wound closure with composite grafts of cultured skin cells and biopolymers. Plast. Reconstr. Surg. 91, 632–641 (1993).
pubmed: 8446717
Burke, J. F., Yannas, I. V., Quinby, W. C., Bondoc, C. C. & Jung, W. K. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann. Surg. 194, 413–428 (1981).
pubmed: 6792993 pmcid: 1345315
Nanchahal, J. & Davies, D. Cultured composite skin grafts for burns. BMJ 301, 1342–1343 (1990).
pubmed: 2271878 pmcid: 1664511
Clark, R. A. Resident memory T cells in human health and disease. Sci. Transl. Med. 7, 269rv1 (2015).
pubmed: 25568072 pmcid: 4425129
Jiang, X. et al. Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature 483, 227–231 (2012).
pubmed: 22388819 pmcid: 3437663
Campbell, J. J. & Butcher, E. C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).
pubmed: 10781407
Nowak, K. et al. Absence of γ-chain in keratinocytes alters chemokine secretion, resulting in reduced immune cell recruitment. J. Investig. Dermatol. 137, 2120–2130 (2017).
pubmed: 28634034
Uchi, H., Terao, H., Koga, T. & Furue, M. Cytokines and chemokines in the epidermis. J. Dermatol. Sci. 24, S29–S38 (2000).
pubmed: 11137393
Merkley, M. A. et al. Large-scale analysis of protein expression changes in human keratinocytes immortalized by human papilloma virus type 16 E6 and E7 oncogenes. Proteome Sci. 7, 29 (2009).
pubmed: 19698150 pmcid: 2744660
Wang, C. K., Nelson, C. F., Brinkman, A. M., Miller, A. C. & Hoeffler, W. K. Spontaneous cell sorting of fibroblasts and keratinocytes creates an organotypic human skin equivalent. J. Investig. Dermatol. 114, 674–680 (2000).
pubmed: 10733672
Wetzels, R. H. W., Robben, H. C. M., Leigh, I. M., Vooijs, G. P. & Ramaekerst, F. C. S. Distribution patterns of type VII collagen in normal and malignant human tissues. Am. J. Pathol. 139, 451–459 (1991).
pubmed: 1867328 pmcid: 1886065
Ali, N. et al. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-effector memory phenotype. PLoS ONE 7(8), e44219 (2012).
pubmed: 22937164 pmcid: 3429415
King, M. et al. A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin. Immunol. Orlando FL 126, 303–314 (2008).
Shultz, L. D. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477–6489 (2005).
pubmed: 15879151
Carr, M. W., Roth, S. J., Luther, E., Rose, S. S. & Springer, T. A. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA 91, 3652–3656 (1994).
pubmed: 8170963
Kawai, T. et al. Selective diapedesis of Th1 cells induced by endothelial cell RANTES. J. Immunol. Baltim. MD 1950(163), 3269–3278 (1999).
Fukui, A. et al. Interleukin-8 and CXCL10 expression in oral keratinocytes and fibroblasts via Toll-like receptors. Microbiol. Immunol. 57, 198–206 (2013).
pubmed: 23278752
Nanki, T. & Lipsky, P. E. Stimulation of T-Cell activation by CXCL12/stromal cell derived factor-1 involves a G-protein mediated signaling pathway. Cell. Immunol. 214, 145–154 (2001).
pubmed: 12088413
Moser, B. & McCully, M. L. The human cutaneous chemokine system. Front. Immunol. 2, 33 (2011).
pubmed: 22566823 pmcid: 3342080
Adachi, T. et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat. Med. 21, 1272–1279 (2015).
pubmed: 26479922 pmcid: 4636445
Belarif, L. et al. IL-7 receptor blockade blunts antigen-specific memory T cell responses and chronic inflammation in primates. Nat. Commun. 9, 1–13 (2018).
Wang, X. et al. Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood 117, 1888–1898 (2011).
pubmed: 21123821 pmcid: 3056638
Klicznik, M. M. et al. Human CD4+CD103+ cutaneous resident memory T cells are found in the circulation of healthy individuals. Sci. Immunol. 4(37), eaav8995 (2019).
pubmed: 31278120 pmcid: 7057121
Shannon, M. F., Himes, S. R. & Coles, L. S. GM-CSF and IL-2 share common control mechanisms in response to costimulatory signals in T cells. J. Leukoc. Biol. 57, 767–773 (1995).
pubmed: 7759956
Shi, Y. et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res. 16, 126–133 (2006).
pubmed: 16474424
Belkaid, Y. & Tamoutounour, S. The influence of skin microorganisms on cutaneous immunity. Nat. Rev. Immunol. 16, 353–366 (2016).
pubmed: 27231051
Gosselin, A. et al. Peripheral blood CCR4+CCR6+ and CXCR3+CCR6+CD4+ T cells are highly permissive to HIV-1 infection. J. Immunol. Baltim. MD 1950(184), 1604–1616 (2010).
Klein, R. S. et al. Oral candidiasis in high-risk patients as the initial manifestation of the acquired immunodeficiency syndrome. N. Engl. J. Med. 311, 354–358 (1984).
pubmed: 6738653
Lagunes, L. & Rello, J. Invasive candidiasis: from mycobiome to infection, therapy, and prevention. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 35, 1221–1226 (2016).
Ling, Y. et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J. Exp. Med. 212, 619–631 (2015).
pubmed: 25918342 pmcid: 4419340
Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).
pubmed: 21350122 pmcid: 3070042
Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).
pubmed: 17486092
Hernández-Santos, N. & Gaffen, S. L. Th17 cells in immunity to Candida albicans. Cell Host Microbe 11, 425–435 (2012).
pubmed: 22607796 pmcid: 3358697
Holling, T. M., Schooten, E. & van Den Elsen, P. J. Function and regulation of MHC class II molecules in T-lymphocytes: of mice and men. Hum. Immunol. 65, 282–290 (2004).
pubmed: 15120183
Oshima, S. & Eckels, D. D. Selective signal transduction through the CD3 or CD2 complex is required for class II MHC expression by human T cells. J. Immunol. Baltim. Md 1950(145), 4018–4025 (1990).
Ko, H. S. IA determinants on stimulated human T lymphocytes. Occurrence on mitogen- and antigen-activated T cells. J. Exp. Med. 150, 246–255 (1979).
pubmed: 88499
Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10, 857–863 (2009).
pubmed: 19578369
Schlapbach, C. et al. Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci. Transl. Med. 6, 219ra8–219ra8 (2014).
Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012).
pubmed: 22466287
Fidan, I. et al. The effects of fluconazole and cytokines on human mononuclear cells. Mem. Inst. Oswaldo Cruz 102, 127–131 (2007).
pubmed: 17426874
Zuber, J. et al. Bidirectional intragraft alloreactivity drives the repopulation of human intestinal allografts and correlates with clinical outcome. Sci. Immunol. 1(4), eaah3732 (2016).
pubmed: 28239678 pmcid: 5323244
Fenini, G. et al. Genome editing of human primary keratinocytes by CRISPR/Cas9 reveals an essential role of the NLRP1 inflammasome in UVB sensing. J. Investig. Dermatol. 138, 2644–2652 (2018).
pubmed: 30096351
Farber, D. L., Yudanin, N. A. & Restifo, N. P. Human memory T cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14, 24–35 (2014).
pubmed: 24336101
Saule, P. et al. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mech. Ageing Dev. 127, 274–281 (2006).
pubmed: 16352331
Haynes, L. & Swain, S. L. Why aging T cells fail: implications for vaccination. Immunity 24, 663–666 (2006).
pubmed: 16782020 pmcid: 7129126
Gratz, I. K. et al. Cutting edge: self-antigen controls the balance between effector and regulatory T cells in peripheral tissues. J. Immunol. Baltim. Md 1950(192), 1351–1355 (2014).
Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109–1118 (1994).
pubmed: 8145033

Auteurs

Maria M Klicznik (MM)

Department of Biosciences, University of Salzburg, Salzburg, Austria.

Ariane Benedetti (A)

Department of Biosciences, University of Salzburg, Salzburg, Austria.

Laura M Gail (LM)

Department of Biosciences, University of Salzburg, Salzburg, Austria.

Suraj R Varkhande (SR)

Department of Biosciences, University of Salzburg, Salzburg, Austria.

Raimund Holly (R)

Department of Biosciences, University of Salzburg, Salzburg, Austria.

Martin Laimer (M)

Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria.

Angelika Stoecklinger (A)

Department of Biosciences, University of Salzburg, Salzburg, Austria.

Andreas Sir (A)

Breast Center, University Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria.

Roland Reitsamer (R)

Breast Center, University Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria.

Theresa Neuper (T)

Department of Biosciences, University of Salzburg, Salzburg, Austria.

Jutta Horejs-Hoeck (J)

Department of Biosciences, University of Salzburg, Salzburg, Austria.

Michael D Rosenblum (MD)

Department of Dermatology, University of California, San Francisco, CA, 94143, USA.

Daniel J Campbell (DJ)

Benaroya Research Institute, 1201 9th AVE, Seattle, WA, 98101, USA.
Department of Immunology, University of Washington School of Medicine, Seattle, WA, 98109, USA.

Eva M Murauer (EM)

EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria.

Iris K Gratz (IK)

Department of Biosciences, University of Salzburg, Salzburg, Austria. iris.gratz@sbg.ac.at.
Benaroya Research Institute, 1201 9th AVE, Seattle, WA, 98101, USA. iris.gratz@sbg.ac.at.
EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria. iris.gratz@sbg.ac.at.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH