Diversity of Growth Responses of Soil Saprobic Fungi to Recurring Heat Events.
climate extreme
global change
multiple perturbation events
soil saprobic fungi
stress priming
thermal stress
Journal
Frontiers in microbiology
ISSN: 1664-302X
Titre abrégé: Front Microbiol
Pays: Switzerland
ID NLM: 101548977
Informations de publication
Date de publication:
2020
2020
Historique:
received:
19
12
2019
accepted:
25
05
2020
entrez:
9
7
2020
pubmed:
9
7
2020
medline:
9
7
2020
Statut:
epublish
Résumé
As a consequence of ongoing climate change, the frequency of extreme heat events is expected to increase. Recurring heat pulses may disrupt functions supported by soil microorganisms, thus affecting the entire ecosystem. However, most perturbation experiments only test effects of single heat events, and therefore it remains largely unknown how soil microorganisms react to repeated pulse events. Here we present data from a lab experiment exposing 32 filamentous fungi, originally isolated from the same soil, to sequential heat perturbations. Soil saprobic fungi isolates were exposed to one or two heat pulses: mild (35°C/2 h), strong (45°C/1 h), or both in sequence (35°C/2 h+45°C/1 h), and we assessed growth rate. Out of the 32 isolates 13 isolates showed an antagonistic response, 3 isolates a synergistic response and 16 isolates responded in an additive manner. Thus the 32 filamentous fungal isolates used here showed the full range of possible responses to an identical heat perturbation sequence. This diversity of responses could have consequences for soil-borne ecosystem services, highlighting the potential importance of fungal biodiversity in maintaining such services, particularly in the context of climate change.
Identifiants
pubmed: 32636822
doi: 10.3389/fmicb.2020.01326
pmc: PMC7316893
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1326Informations de copyright
Copyright © 2020 Szymczak, Ryo, Roy and Rillig.
Références
Glob Chang Biol. 2015 Aug;21(8):2861-80
pubmed: 25752680
Biol Rev Camb Philos Soc. 2016 Nov;91(4):1118-1133
pubmed: 26289992
Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9
pubmed: 18695234
Ecol Lett. 2013 Apr;16(4):469-77
pubmed: 23331708
FEMS Microbiol Ecol. 2015 May;91(5):
pubmed: 25873462
Glob Chang Biol. 2016 Apr;22(4):1325-35
pubmed: 26554638
FEMS Microbiol Ecol. 2016 Aug;92(8):
pubmed: 27222224
Trends Ecol Evol. 2019 Aug;34(8):723-733
pubmed: 31010706
Trends Plant Sci. 2006 Jan;11(1):15-9
pubmed: 16359910
Biol Rev Camb Philos Soc. 2017 Feb;92(1):22-42
pubmed: 26290132
Ecol Lett. 2013 Jun;16(6):799-806
pubmed: 23438320
Ecol Lett. 2008 Dec;11(12):1304-15
pubmed: 19046359
Appl Environ Microbiol. 2002 Dec;68(12):6300-9
pubmed: 12450855
Ecol Evol. 2015 Apr;5(7):1538-47
pubmed: 25897392
Proc Biol Sci. 2016 Feb 10;283(1824):
pubmed: 26865306
Science. 2003 Mar 28;299(5615):2005-10
pubmed: 12663908
Sci Rep. 2019 Oct 2;9(1):14152
pubmed: 31578362
Science. 2019 Nov 15;366(6467):886-890
pubmed: 31727838
Genetics. 2012 Apr;190(4):1157-95
pubmed: 22209905
New Phytol. 2014 Apr;202(2):356-9
pubmed: 24383455