A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators.


Journal

Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440

Informations de publication

Date de publication:
06 2020
Historique:
received: 19 01 2020
accepted: 15 05 2020
entrez: 9 7 2020
pubmed: 9 7 2020
medline: 12 4 2022
Statut: epublish

Résumé

Mimicking the comprehensive functions of human sensing via electronic skins (e-skins) is highly interesting for the development of human-machine interactions and artificial intelligences. Some e-skins with high sensitivity and stability were developed; however, little attention is paid to their comfortability, environmental friendliness, and antibacterial activity. Here, we report a breathable, biodegradable, and antibacterial e-skin based on all-nanofiber triboelectric nanogenerators, which is fabricated by sandwiching silver nanowire (Ag NW) between polylactic-co-glycolic acid (PLGA) and polyvinyl alcohol (PVA). With micro-to-nano hierarchical porous structure, the e-skin has high specific surface area for contact electrification and numerous capillary channels for thermal-moisture transfer. Through adjusting the concentration of Ag NW and the selection of PVA and PLGA, the antibacterial and biodegradable capability of e-skins can be tuned, respectively. Our e-skin can achieve real-time and self-powered monitoring of whole-body physiological signal and joint movement. This work provides a previously unexplored strategy for multifunctional e-skins with excellent practicability.

Identifiants

pubmed: 32637619
doi: 10.1126/sciadv.aba9624
pii: aba9624
pmc: PMC7319766
doi:

Substances chimiques

Anti-Bacterial Agents 0
Silver 3M4G523W1G
Polyvinyl Alcohol 9002-89-5

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

eaba9624

Informations de copyright

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Références

Nat Commun. 2019 Mar 29;10(1):1427
pubmed: 30926850
Adv Mater. 2016 Jun;28(22):4373-95
pubmed: 26867696
Adv Mater. 2018 Jul;30(28):e1801114
pubmed: 29869431
Nat Mater. 2016 Sep;15(9):937-50
pubmed: 27376685
Nat Commun. 2018 Jan 16;9(1):244
pubmed: 29339793
Polymers (Basel). 2011 Sep 1;3(3):1377-1397
pubmed: 22577513
Nat Commun. 2019 Jun 18;10(1):2468
pubmed: 31213598
Nat Commun. 2016 Sep 28;7:12744
pubmed: 27677971
Sci Adv. 2018 Feb 09;4(2):eaaq0508
pubmed: 29487912
Adv Mater. 2018 Feb;30(8):
pubmed: 29318681
Adv Sci (Weinh). 2015 Jul 14;2(10):1500169
pubmed: 27980911
Nature. 2018 Mar 1;555(7694):83-88
pubmed: 29466334
J Colloid Interface Sci. 2014 Feb 15;416:86-94
pubmed: 24370406
Science. 2016 Mar 4;351(6277):1071-4
pubmed: 26941316
ACS Nano. 2017 Sep 26;11(9):9490-9499
pubmed: 28901749
Adv Mater. 2018 Oct;30(43):e1804944
pubmed: 30256476
Nat Biomed Eng. 2018 Sep;2(9):687-695
pubmed: 30906648
Nature. 2019 Nov;575(7783):473-479
pubmed: 31748722
Am J Hypertens. 2005 Jan;18(1 Pt 2):3S-10S
pubmed: 15683725
Adv Mater. 2019 Jun;31(25):e1808148
pubmed: 31070272
Adv Mater. 2020 Feb;32(5):e1902549
pubmed: 31348590
Nanoscale. 2016 Oct 14;8(40):17632-17638
pubmed: 27722725
Adv Mater. 2016 Jun;28(22):4338-72
pubmed: 26840387
Nat Commun. 2017 Jul 20;8(1):88
pubmed: 28729530
Mater Sci Eng C Mater Biol Appl. 2017 Sep 1;78:706-714
pubmed: 28576041
Nat Mater. 2013 Oct;12(10):899-904
pubmed: 23872732
Adv Mater. 2019 Dec;31(49):e1905767
pubmed: 31621959
Eur J Appl Physiol. 2008 Sep;104(2):265-70
pubmed: 18157726
Adv Mater. 2014 Mar 5;26(9):1336-42
pubmed: 24347340
Adv Mater. 2017 Oct;29(38):
pubmed: 28786510
Adv Mater. 2018 Apr;30(14):e1705918
pubmed: 29457281
Acc Chem Res. 2018 May 15;51(5):1033-1045
pubmed: 29693379
Sci Adv. 2016 Mar 04;2(3):e1501478
pubmed: 26973876

Auteurs

Xiao Peng (X)

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Kai Dong (K)

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Cuiying Ye (C)

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Yang Jiang (Y)

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Siyuan Zhai (S)

Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing, 100085, P. R. China.

Renwei Cheng (R)

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Di Liu (D)

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Xiaoping Gao (X)

College of Light Industry and Textile, Inner Mongolia University of Technology, Hohhot, 010051, P. R. China.

Jie Wang (J)

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Zhong Lin Wang (ZL)

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH