Photobiomodulation modulates the expression of inflammatory cytokines during the compensatory hypertrophy process in skeletal muscle.
Animals
Cytokines
/ metabolism
Gene Expression Regulation
/ radiation effects
Hypertrophy
/ metabolism
Interleukin-6
/ metabolism
Low-Level Light Therapy
Male
Matrix Metalloproteinase 2
/ metabolism
Muscle, Skeletal
/ metabolism
Rats
Rats, Wistar
Tendons
/ metabolism
Tumor Necrosis Factor-alpha
/ metabolism
Cytokines
Hypertrophy
Low-level laser therapy
Phototherapy
Skeletal muscle
Journal
Lasers in medical science
ISSN: 1435-604X
Titre abrégé: Lasers Med Sci
Pays: England
ID NLM: 8611515
Informations de publication
Date de publication:
Jun 2021
Jun 2021
Historique:
received:
30
10
2019
accepted:
01
07
2020
pubmed:
9
7
2020
medline:
28
5
2021
entrez:
9
7
2020
Statut:
ppublish
Résumé
Compensatory hypertrophy (CH) occurs due to excessive mechanical load on a muscle, promoting an increase in the size of muscle fibers. In clinical practice, situations such as partial nerve injuries, denervation, and muscle imbalance caused by trauma to muscles and nerves or diseases that promote the loss of nerve conduction can induce CH in muscle fibers. Photobiomodulation (PBM) has demonstrated beneficial effects on muscle tissue during CH. The aim of the present study was to evaluate the effect of PBM on the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) as well as type 2 metalloproteinases (MMP-2) during the process of CH due to excessive load on the plantaris muscle in rats. Forty-five Wistar rats weighing 250 g were divided into three groups: control group (n = 10), hypertrophy (H) group (n = 40), and H + PBM group (n = 40). CH was induced through the ablation of synergist muscles of the plantaris muscle. The tendons of the gastrocnemius and soleus muscles were isolated and sectioned to enable the partial removal of each of muscle. The preserved plantaris muscle below the removed muscles was submitted to excessive functional load. PBM was performed with low-level laser (AsGaAl, λ = 780 nm; 40 mW; energy density: 10 J/cm
Identifiants
pubmed: 32638240
doi: 10.1007/s10103-020-03095-y
pii: 10.1007/s10103-020-03095-y
doi:
Substances chimiques
Cytokines
0
Interleukin-6
0
Tumor Necrosis Factor-alpha
0
Matrix Metalloproteinase 2
EC 3.4.24.24
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
791-802Subventions
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : 1691777
Références
Greising SM, CoronaB T, Call JA (2020) Musculoskeletal regeneration, rehabilitation, and plasticity following traumatic injury. Int J Sports Med. https://doi.org/10.1055/a-1128-7128
Goodman CA, Mayhew DL, Hornberger TA (2011) Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 23:1896–1906. https://doi.org/10.1016/j.cellsig.2011.07.013
doi: 10.1016/j.cellsig.2011.07.013
pubmed: 21821120
pmcid: 3744211
Terena SML, Fernandes KPS, Bussadori SK, Brugnera JA, de Fátima TSD, Magalhães EMR et al (2018) Infrared laser improves collagen organization in muscle and tendon tissue during the process of compensatory overload. Photomed Laser Surg 36:130–136. https://doi.org/10.1089/pho.2017.4302
doi: 10.1089/pho.2017.4302
pubmed: 29466099
Terena SML, Fernandes KPS, Kalil S, Alves AN, Mesquita Ferrari RA (2015) Effects of low level laser in the morphology of the skeletal muscle fiber during compensatory hypertrophy in plantar muscle of rats. Proc SPIE Int Soc Opt Eng 9531:1–7. https://doi.org/10.1117/12.2181034
doi: 10.1117/12.2181034
McGlory C, Phillips SM (2015) Exercise and the regulation of skeletal muscle hypertrophy. Prog Mol Biol Transl Sci 135:153–173. https://doi.org/10.1016/bs.pmbts.2015.06.018
doi: 10.1016/bs.pmbts.2015.06.018
pubmed: 26477914
Terena SML, Fernandes KPS, Bussadori SK, Deana AM, Mesquita-Ferrari RA (2017) Systematic review of the synergist muscle ablation model for compensatory hypertrophy. Rev Assoc Med Bras 63:164–172. https://doi.org/10.1590/1806-9282.63.02.164
doi: 10.1590/1806-9282.63.02.164
pubmed: 28355378
Jensen L, Jørgensen H, Bech RD, Frandsen U, Schrøder HD (2016) Skeletal muscle remodelling as a function of disease progression in amyotrophic lateral sclerosis. Biomed Res Int 2016:1–12. https://doi.org/10.1155/2016/5930621
doi: 10.1155/2016/5930621
Heikkinen J, Lantto I, Piilonen J, Flinkkilä T, Ohtonen P, Siira P et al (2017) Tendon length, calf muscle atrophy, and strength deficit after acute Achilles tendon rupture: long-term follow-up of patients in a previous study. J Bone Joint Surg 99:1509–1515. https://doi.org/10.2106/JBJS.16.01491
doi: 10.2106/JBJS.16.01491
pubmed: 28926379
Jung S, Ahn N, Kim S, Byun J, Joo Y, Kim S et al (2015) The effect of ladder-climbing exercise on atrophy / hypertrophy- related myokine expression in middle-aged male Wistar rats. J Physiol Sci 65:515–521. https://doi.org/10.1007/s12576-015-0388-1
doi: 10.1007/s12576-015-0388-1
pubmed: 26223833
Broholm C, Mortensen OH, Nielsen S, Akerstrom T, Zankari A, Dahl B et al (2008) Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle. J Physiol 586:2195–2201. https://doi.org/10.1113/jphysiol.2007.149781
doi: 10.1113/jphysiol.2007.149781
pubmed: 18292129
pmcid: 2465206
Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406. https://doi.org/10.1152/physrev.90100.2007
doi: 10.1152/physrev.90100.2007
pubmed: 18923185
Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465. https://doi.org/10.1038/nrendo.2012.49
doi: 10.1038/nrendo.2012.49
pubmed: 22473333
Gao S, Durstine JL, Koh HJ, Carver WE, Frizzell N, Carson JA (2017) Acute myotube protein synthesis regulation by IL-6-related cytokines. Am J Physiol Cell Physiol 313:487–500. https://doi.org/10.1152/ajpcell.00112.2017
doi: 10.1152/ajpcell.00112.2017
Thoma A, Lightfoot AP (2018) NF-kB and inflammatory cytokine signalling: role in skeletal muscle atrophy. In: Xiao J (ed) Muscle atrophy, Advances in Experimental Medicine and Biology, vol 1088. p 267–279. https://doi.org/10.1007/978-981%2D%2D1435-3_12
Macêdo Santiago L, Neto LGL, Borges Pereira G, Leite RD, Mostarda CT et al (2018) Effects of resistance training on immunoinflammatory response, TNF-alpha gene expression, and body composition in elderly women. J Aging Res 2018:1–10. https://doi.org/10.1155/2018/1467025
doi: 10.1155/2018/1467025
Lin HP, Zheng YQ, Zhou ZP, Wang GX, Guo PF (2018) Ryanodine receptor antagonism alleviates skeletal muscle ischemia reperfusion injury by modulating TNF-α and IL-10. Clin Hemorheol Microcirc 70:51–58. https://doi.org/10.3233/CH-170276
doi: 10.3233/CH-170276
pubmed: 29660904
Patel HJ, Patel BM (2017) TNF-α and cancer cachexia: molecular insights and clinical implications. Life Sci 170:56–63. https://doi.org/10.1016/j.lfs.2016.11.033
doi: 10.1016/j.lfs.2016.11.033
pubmed: 27919820
Carmignac V, Durbeej M (2012) Cell – matrix interactions in muscle disease. J Pathol 226:200–218. https://doi.org/10.1002/path.3020
doi: 10.1002/path.3020
pubmed: 21989954
Ribeiro BG, Alves AN, Santos LA, Fernandes KP, Cantero TM, Gomes MT et al (2015) The effect of low-level laser therapy (LLLT) applied prior to muscle injury. Lasers Surg Med 47:571–578. https://doi.org/10.1002/lsm.22381
doi: 10.1002/lsm.22381
pubmed: 26150082
de Melo CAV, Alves AN, Terena SML, Fernandes KPS, Nunes FD, de Fátima Teixeira da Silva D et al (2016) Light-emitting diode therapy increases collagen deposition during the repair process of skeletal muscle. Lasers Med Sci 31:531–538. https://doi.org/10.1007/s10103-016-1888-9
doi: 10.1007/s10103-016-1888-9
pubmed: 26873500
Alves AN, Fernandes KP, Melo CA, Yamaguchi RY, França CM, Teixeira DF, Bussadori SK, Nunes FD, Mesquita-Ferrari RA (2014) Modulating effect of low level-laser therapy on fibrosis in the repair process of the tibialis anterior muscle in rats. Lasers Med Sci 29:813–821. https://doi.org/10.1007/s10103-013-1428-9
doi: 10.1007/s10103-013-1428-9
pubmed: 23982721
Zhang Q, Joshi SK, Lovett DH, Zhang B, Bodine S, Kim HT, Liu X (2015) Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy. Muscles Ligaments Tendons J 4:446–454. https://doi.org/10.11138/mltj/2014.4.4.446
doi: 10.11138/mltj/2014.4.4.446
pubmed: 25767782
pmcid: 4327354
Mazon J, de Aro AA, Simões PW, Pimentel ER (2018) Effect of different resistance-training protocols on the extracellular matrix of the calcaneal tendon of rats. Ann Anat 216:75–81. https://doi.org/10.1016/j.aanat.2017.11.002
doi: 10.1016/j.aanat.2017.11.002
pubmed: 29229272
Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099. https://doi.org/10.1111/j.1751-1097.2008.00394.x
doi: 10.1111/j.1751-1097.2008.00394.x
pubmed: 18651871
de Souza TOF, Mesquita DA, Ferrari RAM, Dos Santos PD, Correa L, Bussadori SK et al (2011) Phototherapy with low-level laser affects the remodeling of types i and III collagen in skeletal muscle repair. Lasers Med Sci 26:803–814. https://doi.org/10.1007/s10103-011-0951-9
doi: 10.1007/s10103-011-0951-9
pubmed: 21761120
Mesquita-Ferrari RA, Martins MD, Silva JÁ, Da Silva TD, Piovesan RF, Pavesi CV et al (2011) Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci 26:335–340. https://doi.org/10.1007/s10103-010-0850-5
doi: 10.1007/s10103-010-0850-5
pubmed: 21053039
Leal Junior ECP, Lopes-Martins RÁB, Baroni BM et al (2009) Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci 24:857–863. https://doi.org/10.1007/s10103-008-0633-4
doi: 10.1007/s10103-008-0633-4
pubmed: 19057981
Patrocinio T, Sardim AC, Assis L, Fernandes KR, Rodrigues N, Renno ACM (2013) Effect of low-level laser therapy (808 nm) keletal muscle after resistance exercise training in rats. Photomed Laser Surg 31:492–498. https://doi.org/10.1089/pho.2013.3540
doi: 10.1089/pho.2013.3540
pubmed: 24102167
Leal Junior ECP, Lopes-Martins R, Dalan F et al (2008) Effect of 655 nm low level laser therapy (LLLT) in exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26:419–424. https://doi.org/10.1089/pho.2007.2160
doi: 10.1089/pho.2007.2160
pubmed: 18817474
Amadio EM, Serra AJ, Guaraldo SA et al (2015) The action of pre-exercise low-level laser therapy (LLLT) on the expression of IL-6 and TNF-α proteins and on the functional fitness of elderly rats subjected to aerobic training. Lasers Med Sci 30:1127–1134. https://doi.org/10.1007/s10103-015-1713-x
doi: 10.1007/s10103-015-1713-x
pubmed: 25647393
Terada M, Kawano F, Oshira T, Nakai N, Nishimoto N (2012) Effects of mechanical over-loading on the properties of soleus muscle fibers, with or without damage, in wild type and Mdx mice. PLoS One 7(34557):1–9. https://doi.org/10.1371/journal.pone.0034557
doi: 10.1371/journal.pone.0034557
Gordon BS, Delgado Diaz DC, White JP, Carson JA, Kostec MC (2012) Six1 and Six1 cofactor expression is altered during early skeletal muscle overload in mice. J Physiol Sci 62:393–401. https://doi.org/10.1007/s12576-012-0214-y
doi: 10.1007/s12576-012-0214-y
pubmed: 22700049
World Association of Laser Therapy (WALT) (2006) Standards for the design and conduct of systematic reviews with low level laser therapy for musculoskeletal pain and disorders. Photomed Laser Surg 24:759–760. https://doi.org/10.1089/pho.2006.24.759
doi: 10.1089/pho.2006.24.759
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
doi: 10.1016/0003-2697(76)90527-3
pubmed: 942051
pmcid: 942051
DiPasquale DM, Cheng M, Billich W, Huang SA, Rooijen N, Hornberger TA et al (2007) Urokinase-type plasminogen activator and macrophages are required for skeletal muscle hypertrophy in mice. Am J Physiol Cell Physiol 293:1278–1285. https://doi.org/10.1152/ajpcell.00201.2007
doi: 10.1152/ajpcell.00201.2007
Ichinose T, Yamamoto A, Kobayashi T, Shitara H, Shimoyama D, Iizuka H et al (2016) Compensatory hypertrophy of the teres minor muscle after large rotator cuff tear model in adult male rat. J Shoulder Elb Surg 25:316–321. https://doi.org/10.1016/j.jse.2015.07.023
doi: 10.1016/j.jse.2015.07.023
Parvaresh KC, Huber AM, Brochin RL, Bacon PL, McCall GE, Huey KA et al (2010) Acute vascular endothelial growth factor expression during hypertrophy is muscle phenotype specific and localizes as a striated pattern within fibres. Exp Physiol 95:1098–1106. https://doi.org/10.1113/expphysiol.2010.053959
doi: 10.1113/expphysiol.2010.053959
pubmed: 20696782
Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280:4294–4314. https://doi.org/10.1111/febs.12253
doi: 10.1111/febs.12253
pubmed: 23517348
pmcid: 23517348
de Brito A, Alves AN, Ribeiro BG, Barbosa DVDE, Magalhaes EMR, Fernandes KPS et al (2018) Effect of photobiomodulation on connective tissue remodeling and regeneration of skeletal muscle in elderly rats. Lasers Med Sci 33:513–521. https://doi.org/10.1007/s10103-017-2392-6
doi: 10.1007/s10103-017-2392-6
pubmed: 29181641
Alves AN, Ribeiro BG, Fernandes KP, Souza NH, Rocha LA, Nunes FD et al (2016) Comparative effects of low-level laser therapy pre- and post-injury on mRNA expression of MyoD, myogenin, and IL-6 during the skeletal muscle repair. Lasers Med Sci 31:679–685. https://doi.org/10.1007/s10103-016-1908-9
doi: 10.1007/s10103-016-1908-9
pubmed: 26914683
Serrano AL, Baeza-Raja B, Perdiguero E, Jardí H, Muñoz-Cánoves P (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7:33–44. https://doi.org/10.1016/j.cmet.2007.11.010
doi: 10.1016/j.cmet.2007.11.010
pubmed: 18177723
Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL (2013) Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J 280:4131–4148. https://doi.org/10.1111/febs.12338
doi: 10.1111/febs.12338
pubmed: 23663276
pmcid: 4163639
Tidball JG, Villalta AS (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Phys Regul Integr Comp Phys 298:1173–1187. https://doi.org/10.1152/ajpregu.00735.2009
doi: 10.1152/ajpregu.00735.2009
Deus APL, Bassi D, Simoes RP, Oliveira CR, Baldissera V et al (2012) MMP− 2 expression in skeletal muscle after strength training. Int J Sports Med 33:137–141. https://doi.org/10.1055/s-0031-1291224
doi: 10.1055/s-0031-1291224
pubmed: 22095325