Generation of cerebral cortical GABAergic interneurons from pluripotent stem cells.
GABAergic interneuron
cell-based therapy
cerebral cortex
disease modeling
embryonic stem cells
induced pluripotent stem cells
neural development
transplantation
Journal
Stem cells (Dayton, Ohio)
ISSN: 1549-4918
Titre abrégé: Stem Cells
Pays: England
ID NLM: 9304532
Informations de publication
Date de publication:
11 2020
11 2020
Historique:
received:
19
04
2018
revised:
18
05
2020
accepted:
11
06
2020
pubmed:
9
7
2020
medline:
3
9
2021
entrez:
9
7
2020
Statut:
ppublish
Résumé
The cerebral cortex functions by the complex interactions of intrinsic and extrinsic neuronal activities, glial actions, and the effects of humoral factors. The intrinsic neuronal influences are mediated by two major subclasses: excitatory glutamatergic neurons that generally have axonal projections extending beyond the neuron's locality and inhibitory GABAergic neurons that generally project locally. These interneurons can be grouped based on morphological, neurochemical, electrophysiological, axonal targeting, and circuit influence characteristics. Cortical interneurons (CIns) can also be grouped based on their origins within the subcortical telencephalon. Interneuron subtypes, of which a dozen or more are thought to exist, are characterized by combinations of these subgrouping features. Due to their well-documented relevance to the causes of and treatments for neuropsychiatric disorders, and to their remarkable capacity to migrate extensively following transplantation, there has been tremendous interest in generating cortical GABAergic interneurons from human pluripotent stem cells. In this concise review, we discuss recent progress in understanding how interneuron subtypes are generated in vivo, and how that progress is being applied to the generation of rodent and human CIns in vitro. In addition, we will discuss approaches for the rigorous designation of interneuron subgroups or subtypes in transplantation studies, and challenges to this field, including the protracted maturation of human interneurons.
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1375-1386Subventions
Organisme : NIMH NIH HHS
ID : 5F30MH105045
Pays : United States
Organisme : NIMH NIH HHS
ID : R01MH066912
Pays : United States
Organisme : NIMH NIH HHS
ID : F31NS108622
Pays : United States
Informations de copyright
©AlphaMed Press 2020.
Références
DeFelipe J, Lopez-Cruz PL, Benavides-Piccione R, et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci. 2013;14(3):202-216.
Wonders CP, Anderson SA. The origin and specification of cortical interneurons. Nat Rev Neurosci. 2006;7:687-696.
Wamsley B, Fishell G. Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat Rev Neurosci. 2017;18(5):299-309.
Fishell G, Kepecs A. Interneuron types as attractors and controllers. Annu Rev Neurosci. 2019.
DeFelipe J. Cortical interneurons: from Cajal to 2001. Prog Brain Res. 2002;136:215-238.
Boldog E, Bakken TE, Hodge RD, et al. Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nat Neurosci. 2018;21(9):1185-1195.
Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6(4):312-324.
Marin O. Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci. 2012;13(2):107-120.
Anderson C, Stern CD. Organizers in development. Curr Top Dev Biol. 2016;117:435-454.
Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, de Robertis EM. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell. 1994;79(5):779-790.
Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275-280.
Lupo G, Harris WA, Lewis KE. Mechanisms of ventral patterning in the vertebrate nervous system. Nat Rev Neurosci. 2006;7(2):103-114.
Shimamura K, Martinez S, Puelles L, Rubenstein JLR. Patterns of gene expression in the neural plate and neural tube subdivide the embryonic forebrain into transverse and longitudinal domains. Dev Neurosci. 1997;19(1):88-96.
Tao W, Lai E. Telencephalon-restricted expression of BF-1, a new member of the HNF-3/fork head gene family, in the developing rat brain. Neuron. 1992;8(5):957-966.
Hebert JM, Fishell G. The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci. 2008;9:678-685.
Hu JS, Vogt D, Sandberg M, Rubenstein JL. Cortical interneuron development: a tale of time and space. Development. 2017;144(21):3867-3878.
Chiang C, Litingtung Y, Lee E, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 1996;383(6599):407-413.
Ma T, Wang C, Wang L, et al. Subcortical origins of human and monkey neocortical interneurons [in English]. Nat Neurosci. 2013;16:1588-1597.
Hansen DV, Lui JH, Flandin P, et al. Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nat Neurosci. 2013;16:1576-1587.
Kepecs A, Fishell G. Interneuron cell types are fit to function. Nature. 2014;505(7483):318-326.
Kubota Y, Kawaguchi Y. Three classes of GABAergic interneurons in neocortex and neostriatum. Jpn J Physiol. 1994;44(suppl 2):S145-S148.
Xu Q, Cobos I, De La Cruz E, et al. Origins of cortical interneuron subtypes. J Neurosci. 2004;24(11):2612-2622.
Butt SJ, Sousa VH, Fuccillo MV, et al. The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron. 2008;59(5):722-732.
Xu Q, Wonders CP, Anderson SA. Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon. Development. 2005;132(22):4987-4998.
Xu Q, Guo L, Moore H, Waclaw RR, Campbell K, Anderson SA. Sonic hedgehog signaling confers ventral telencephalic progenitors with distinct cortical interneuron fates. Neuron. 2010;65(3):328-340.
Wonders CP, Taylor L, Welagen J, Mbata IC, Xiang JZ, Anderson SA. A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. Dev Biol. 2008;314(1):127-136.
Sousa VH, Miyoshi G, Hjerling-Leffler J, Karayannis T, Fishell G. Characterization of Nkx6-2-derived neocortical interneuron lineages [in English]. Cereb Cortex. 2009;19(suppl 1):i1-i10.
Inan M, Welagen J, Anderson SA. Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. Cereb Cortex. 2012;22(4):820-827.
Flames N, Pla R, Gelman DM, Rubenstein JLR, Puelles L, Marin O. Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci. 2007;27(36):9682-9695.
Tyson JA, Goldberg EM, Maroof AM, Xu Q, Petros TJ, Anderson SA. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells. Development. 2015;142(7):1267-1278.
Marin O, Anderson SA, Rubenstein JL. Origin and molecular specification of striatal interneurons. J Neurosci. 2000;20(16):6063-6076.
Nobrega-Pereira S, Kessaris N, Du T, et al. Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron. 2008;59(5):733-745.
Du T, Xu Q, Ocbina PJ, et al. NKX2.1 specifies cortical interneuron fate by activating Lhx6. Development. 2008;135(8):1559-1567.
Liodis P, Denaxa M, Grigoriou M, Akufo-Addo C, Yanagawa Y, Pachnis V. Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J Neurosci. 2007;27(12):3078-3089.
Neves G, Shah MM, Liodis P, et al. The LIM homeodomain protein Lhx6 regulates maturation of interneurons and network excitability in the mammalian cortex [in English]. Cereb Cortex. 2013;23(8):1811-1823.
Yuan F, Fang KH, Hong Y, et al. LHX6 is essential for the migration of human pluripotent stem cell-derived GABAergic interneurons. Protein Cell. 2020;11(4):286-291.
Anderson SA, Kaznowski CE, Horn C, Rubenstein JL, McConnell S. Distinct origins of neocortical projection neurons and interneurons in vivo. Cereb Cortex. 2002;12(7):702-709.
Letinic K, Zoncu R, Rakic P. Origin of GABAergic neurons in the human neocortex. Nature. 2002;417(6889):645-649.
Zecevic N, Chen Y, Filipovic R. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol. 2005;491(2):109-122.
Radonjic NV, Ayoub AE, Memi F, et al. Diversity of cortical interneurons in primates: the role of the dorsal proliferative niche. Cell Rep. 2014;9(6):2139-2151.
Radonjic NV, Memi F, Ortega JA, et al. The role of sonic hedgehog in the specification of human cortical progenitors in vitro. Cereb Cortex. 2016;26(1):131-143.
Arshad A, Vose LR, Vinukonda G, et al. Extended production of cortical interneurons into the third trimester of human gestation. Cereb Cortex. 2016;26(5):2242-2256.
Ascoli GA, Alonso-Nanclares L, Anderson SA, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex [in English]. Nat Rev Neurosci. 2008;9(7):557-568.
Anderson SA, Eisenstat DD, Shi L, Rubenstein JL. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science. 1997;278(5337):474-476.
Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci. 1999;19(18):7881-7888.
Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla A. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci. 1999;2(5):461-466.
Maroof AM, Keros S, Tyson JA, et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell. 2013;12(5):559-572.
Kim TG, Yao R, Monnell T, et al. Efficient specification of interneurons from human pluripotent stem cells by dorsoventral and rostrocaudal modulation. Stem Cells. 2014;32(7):1789-1804.
Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545(7652):54-59.
Xiang Y, Tanaka Y, Patterson B, et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 2017;21(3):383-398.
Nicholas CR, Chen J, Tang Y, et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell. 2013;12(5):573-586.
Xu R, Brawner AT, Li S, et al. OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of down syndrome. Cell Stem Cell. 2019;24(6):908-926.
Liu Y, Weick JP, Liu H, et al. Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol. 2013;31:440-447.
Germain ND, Banda EC, Becker S, Naegele JR, Grabel LB. Derivation and isolation of NKX2.1-positive basal forebrain progenitors from human embryonic stem cells. Stem Cells Dev. 2013;22(10):1477-1489.
Lee H, Yun S, Kim IS, et al. Human fetal brain-derived neural stem/progenitor cells grafted into the adult epileptic brain restrain seizures in rat models of temporal lobe epilepsy. PLoS One. 2014;9:e104092.
Cunningham M, Cho JH, Leung A, et al. hPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. Cell Stem Cell. 2014;15:559-573.
Colasante G, Lignani G, Rubio A, et al. Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell. 2015;17(6):719-734.
Zhou FW, Fortin JM, Chen HX, et al. Functional integration of human neural precursor cells in mouse cortex. PLoS One. 2015;10:e0120281.
Sun AX, Yuan Q, Tan S, et al. Direct induction and functional maturation of forebrain GABAergic neurons from human pluripotent stem cells. Cell Rep. 2016;16(7):1942-1953.
Ahn S, Kim TG, Kim KS, Chung S. Differentiation of human pluripotent stem cells into medial ganglionic eminence vs caudal ganglionic eminence cells. Methods. 2016;101:103-112.
Chen YJ, Vogt D, Wang Y, et al. Use of "MGE enhancers" for labeling and selection of embryonic stem cell-derived medial ganglionic eminence (MGE) progenitors and neurons. PLoS One. 2013;8(5):e61956.
Fandel TM, Trivedi A, Nicholas CR, et al. Transplanted human stem cell-derived interneuron precursors mitigate mouse bladder dysfunction and central neuropathic pain after spinal cord injury. Cell Stem Cell. 2016;19:544-557.
Xu JC, Fan J, Wang X, et al. Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity. Sci Transl Med. 2016;8:333-348.
Yang N, Chanda S, Marro S, et al. Generation of pure GABAergic neurons by transcription factor programming [in English]. Nat Methods. 2017;14(6):621-628.
Meganathan K, Lewis EMA, Gontarz P, et al. Regulatory networks specifying cortical interneurons from human embryonic stem cells reveal roles for CHD2 in interneuron development. Proc Natl Acad Sci USA. 2017;114(52):E11180-E11189.
Shao Z, Noh H, Bin Kim W, et al. Dysregulated protocadherin-pathway activity as an intrinsic defect in induced pluripotent stem cell-derived cortical interneurons from subjects with schizophrenia. Nat Neurosci. 2019;22:229-242.
Choi GB, Dong HW, Murphy AJ, et al. Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Neuron. 2005;46(4):647-660.
Batista-Brito R, Machold R, Klein C, Fishell G. Gene expression in cortical interneuron precursors is prescient of their mature function. Cereb Cortex. 2008;18(10):2306-2317.
Conde F, Lund JS, Jacobowitz DM, et al. Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology. J Comp Neurol. 1994;341(1):95-116.
Cauli B, Audinat E, Lambolez B, et al. Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci. 1997;17(10):3894-3906.
Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A. Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J Neurosci. 2006;26(19):5069-5082.
Steullet P, Cabungcal JH, Coyle J, et al. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia [in English]. Mol Psychiatry. 2017;22(7):936-943.
Korotkova T, Fuchs EC, Ponomarenko A, von Engelhardt J, Monyer H. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron. 2010;68(3):557-569.
Vogt Weisenhorn DM, Celio MR, Rickmann M. The onset of parvalbumin-expression in interneurons of the rat parietal cortex depends upon extrinsic factor(s). Eur J Neurosci. 1998;10(3):1027-1036.
Anderson SA, Classey JD, Conde F, et al. Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex. Neuroscience. 1995;67(1):7-22.
Weiser M, Bueno E, Sekirnjak C, et al. The potassium channel subunit KV3.1b is localized to somatic and axonal membranes of specific populations of CNS neurons. J Neurosci. 1995;15(6):4298-4314.
Rogers SL, Rankin-Gee E, Risbud RM, Porter BE, Marsh ED. Normal development of the perineuronal net in humans; in patients with and without epilepsy. Neuroscience. 2018;384:350-360.
Spatazza J, Mancia Leon WR, Alvarez-Buylla A. Transplantation of GABAergic interneurons for cell-based therapy. Prog Brain Res. 2017;231:57-85.
Watanabe K, Kamiya D, Nishiyama A, et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci. 2005;8(3):288-296.
Danjo T, Eiraku M, Muguruma K, et al. Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. J Neurosci. 2011;31(5):1919-1933.
Storm EE, Garel S, Borello U, et al. Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development. 2006;133(9):1831-1844.
Cambray S, Arber C, Little G, et al. Activin induces cortical interneuron identity and differentiation in embryonic stem cell-derived telencephalic neural precursors. Nat Commun. 2012;3:841.
Xu Q, Tam M, Anderson SA. Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol. 2008;506(1):16-29.
Butt SJ, Fuccillo M, Nery S, et al. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron. 2005;48(4):591-604.
Glickstein SB, Moore H, Slowinska B, et al. Selective cortical interneuron and GABA deficits in cyclin D2-null mice. Development. 2007;134(22):4083-4093.
Lodato S, Tomassy GS, De Leonibus E, et al. Loss of COUP-TFI alters the balance between caudal ganglionic eminence- and medial ganglionic eminence-derived cortical interneurons and results in resistance to epilepsy. J Neurosci. 2011;31(12):4650-4662.
Petros TJ, Bultje RS, Ross ME, Fishell G, Anderson SA. Apical vs. basal neurogenesis directs cortical interneuron subclass fate. Cell Rep. 2015;13:1090-1095.
Wang J, Gallagher D, DeVito LM, et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation [in English]. Cell Stem Cell. 2012;11(1):23-35.
Tischfield DJ, Kim J, Anderson SA. Atypical PKC and notch inhibition differentially modulate cortical interneuron subclass fate from embryonic stem cells [in English]. Stem Cell Reports. 2017;8(5):1135-1143.
Goulburn AL, Stanley EG, Elefanty AG, Anderson SA. Generating GABAergic cerebral cortical interneurons from mouse and human embryonic stem cells. Stem Cell Res. 2012;8(3):416-426.
Watanabe K, Ueno M, Kamiya D, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25(6):681-686.
Li XJ, Zhang X, Johnson MA, Wang ZB, LaVaute T, Zhang SC. Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development. 2009;136(23):4055-4063.
Goulburn AL, Alden D, Davis RP, et al. A targeted NKX2.1 human embryonic stem cell reporter line enables identification of human basal forebrain derivatives. Stem Cells. 2011;29(3):462-473.
Filice F, Schwaller B, Michel TM, Grünblatt E. Profiling parvalbumin interneurons using iPSC: challenges and perspectives for autism spectrum disorder (ASD). Mol Autism. 2020;11(1):10.
Letinic K, Kostovic I. Postnatal development of calcium-binding proteins calbindin and parvalbumin in human visual cortex. Cereb Cortex. 1998;8(7):660-669.
Di Lullo E, Kriegstein AR. The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci. 2017;18(10):573-584.
Mariani J, Coppola G, Zhang P, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 2015;162(2):375-390.
Anderson SA, Marin O, Horn C, et al. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development. 2001;128(3):353-363.
Marin O, Yaron A, Bagri A, et al. Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science. 2001;293(5531):872-875.
Close JL, Yao Z, Levi BP, et al. Single-cell profiling of an in vitro model of human interneuron development reveals temporal dynamics of cell type production and maturation. Neuron. 2017;93(5):1035-1048.
Mi D, Li Z, Lim L, et al. Early emergence of cortical interneuron diversity in the mouse embryo. Science. 2018;360(6384):81-85.
Mayer C, Hafemeister C, Bandler RC, et al. Developmental diversification of cortical inhibitory interneurons. Nature. 2018;555(7697):457-462.
Au E, Ahmed T, Karayannis T, Biswas S, Gan L, Fishell G. A modular gain-of-function approach to generate cortical interneuron subtypes from ES cells. Neuron. 2013;80(5):1145-1158.
Petros TJ, Maurer CW, Anderson SA. Enhanced derivation of mouse ESC-derived cortical interneurons by expression of Nkx2.1. Stem Cell Res. 2013;11(1):647-656.
Stuhmer T, Anderson SA, Ekker M, et al. Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. Development. 2002;129(1):245-252.
Zerucha T, Stuhmer T, Hatch G, et al. A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J Neurosci. 2000;20(2):709-721.
Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex. 2002;12(4):395-410.
Yuan F, Chen X, Fang KH, et al. Induction of human somatostatin and parvalbumin neurons by expressing a single transcription factor LIM homeobox 6. Elife. 2018;7:e37382.
Nehme R, Zuccaro E, Ghosh SD, et al. Combining NGN2 programming with developmental patterning generates human excitatory neurons with NMDAR-mediated synaptic transmission. Cell Rep. 2018;23(8):2509-2523.
Sandberg M, Flandin P, Silberberg S, et al. Transcriptional networks controlled by NKX2-1 in the development of forebrain GABAergic neurons. Neuron. 2016;91(6):1260-1275.