Boosting the Quantum Efficiency of Ultralong Organic Phosphorescence up to 52 % via Intramolecular Halogen Bonding.
halogen bonding
high efficiency
intersystem crossing
intramolecular interaction
ultralong organic phosphorescence
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
28 Sep 2020
28 Sep 2020
Historique:
received:
21
05
2020
pubmed:
9
7
2020
medline:
9
7
2020
entrez:
9
7
2020
Statut:
ppublish
Résumé
Ultralong organic phosphorescence (UOP) has attracted increasing attention due to its potential applications in optoelectronics, bioelectronics, and security protection. However, achieving UOP with high quantum efficiency (QE) over 20 % is still full of challenges due to intersystem crossing (ISC) and fast non-radiative transitions in organic molecules. Here, we present a novel strategy to enhance the QE of UOP materials by modulating intramolecular halogen bonding via structural isomerism. The QE of CzS2Br reaches up to 52.10 %, which is the highest afterglow efficiency reported so far. The crucial reason for the extraordinary QE is intramolecular halogen bonding, which can not only effectively enhance ISC by promoting spin-orbit coupling, but also greatly confine motions of excited molecules to restrict non-radiative pathways. This work provides a reasonable strategy to develop highly efficient UOP materials for practical applications.
Identifiants
pubmed: 32638499
doi: 10.1002/anie.202007343
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
17451-17455Subventions
Organisme : National Natural Science Foundation of China
ID : 51733010, 51803242, 51973239, 61605253 and 21672267
Organisme : the Science and Technology Planning Project of Guangdong
ID : 2015B090913003
Organisme : the China Postdoctoral Science Foundation
ID : 2017M620395, 2019T120763
Organisme : the Fundamental Research Funds for the Central Universities
Informations de copyright
© 2020 Wiley-VCH GmbH.
Références
S. Cai, H. Shi, J. Li, L. Gu, Y. Ni, Z. Cheng, S. Wang, W. W. Xiong, L. Li, Z. An, W. Huang, Adv. Mater. 2017, 29, 1701244.
Z. J. Chen, K. Y. Zhang, X. Tong, Y. H. Liu, C. Y. Hu, S. J. Liu, Q. Yu, Q. Zhao, W. Huang, Adv. Funct. Mater. 2016, 26, 4386;
C. Li, X. Tang, L. Zhang, C. Li, Z. Liu, Z. Bo, Y. Q. Dong, Y.-H. Tian, Y. Dong, B. Z. Tang, Adv. Opt. Mater. 2015, 3, 1184;
P. Lehner, C. Staudinger, S. M. Borisov, I. Klimant, Nat. Commun. 2014, 5, 4460.
S. M. A. Fateminia, Z. Mao, S. Xu, Z. Yang, Z. Chi, B. Liu, Angew. Chem. Int. Ed. 2017, 56, 12160-12164;
Angew. Chem. 2017, 129, 12328-12332;
J. Yang, X. Zhen, B. Wang, X. Gao, Z. Ren, J. Wang, Y. Xie, J. Li, Q. Peng, K. Pu, Z. Li, Nat. Commun. 2018, 9, 840;
Q. Miao, C. Xie, X. Zhen, Y. Lyu, H. Duan, X. Liu, J. V. Jokerst, K. Pu, Nat. Biotechnol. 2017, 35, 1102;
S. Cai, H. Shi, J. Li, L. Gu, Y. Ni, Z. Cheng, S. Wang, W. W. Xiong, L. Li, Z. An, W. Huang, Adv. Mater. 2017, 29, 1701244;
G. Zhang, G. M. Palmer, M. W. Dewhirst, C. L. Fraser, Nat. Mater. 2009, 8, 747-751.
R. Gao, X. Mei, D. Yan, R. Liang, M. Wei, Nat. Commun. 2018, 9, 2798;
L. Xu, K. Zhou, H. Ma, A. Lv, D. Pei, G. Li, Y. Zhang, Z. An, A. Li, G. He, ACS Appl. Mater. Interfaces 2020, 12, 18385-18394.
R. Kabe, N. Notsuka, K. Yoshida, C. Adachi, Adv. Mater. 2016, 28, 655-660.
W. Z. Yuan, X. Shen, H. Zhao, J. Lam, L. Tang, P. Lu, C. Wang, Y. Liu, Z. Wang, Q. Zheng, J. Sun, Y. Ma, B. Z. Tang, J. Phys. Chem. C 2010, 114, 6090-6099;
Y. Gong, G. Chen, Q. Peng, W. Z. Yuan, Y. Xie, S. Li, Y. Zhang, B. Z. Tang, Adv. Mater. 2015, 27, 6195-6201.
Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685-690;
J. Yuan, S. Wang, Y. Ji, R. Chen, Q. Zhu, Y. Wang, C. Zheng, Y. Tao, Q. Fan, W. Huang, Mater. Horiz. 2019, 6, 1259-1264.
J. Wei, B. Liang, R. Duan, Z. Cheng, C. Li, T. Zhou, Y. Yi, Y. Wang, Angew. Chem. Int. Ed. 2016, 55, 15589-15593;
Angew. Chem. 2016, 128, 15818-15822;
R. Kabe, C. Adachi, Nature 2017, 550, 384-387;
K. Jinnai, R. Kabe, C. Adachi, Adv. Mater. 2018, 30, 1800365.
Z. Yang, Z. Mao, X. Zhang, D. Ou, Y. Mu, Y. Zhang, C. Zhao, S. Liu, Z. Chi, J. Xu, Y. C. Wu, P. Y. Lu, A. Lien, M. R. Bryce, Angew. Chem. Int. Ed. 2016, 55, 2181-2185;
Angew. Chem. 2016, 128, 2221-2225;
D. Tian, Z. Zhu, L. Xu, H. Cong, J. Zhu, Mater. Horiz. 2019, 6, 1215-1221;
Z. Mao, Z. Yang, C. Xu, Z. Xie, L. Jiang, F. L. Gu, J. Zhao, Y. Zhang, M. P. Aldred, Z. Chi, Chem. Sci. 2019, 10, 7352-7357.
X. Yang, D. Yan, Adv. Opt. Mater. 2016, 4, 897-905;
X. Yang, D. Yan, Chem. Sci. 2016, 7, 4519-4526.
P. Politzer, P. Lane, M. C. Concha, Y. Ma, J. S. Murray, J. Mol. Model. 2007, 13, 305-311.
W. Wang, Y. Zhang, W. J. Jun, Coord. Chem. Rev. 2020, 404, 213107;
O. Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205-210.
Z. Y. Zhang, Y. Chen, Y. Liu, Angew. Chem. Int. Ed. 2019, 58, 6028-6032;
Angew. Chem. 2019, 131, 6089-6093.
H. Shi, Z. An, P. Z. Li, J. Yin, G. Xing, T. He, H. Chen, J. Wang, H. Sun, W. Huang, Y. Zhao, Cryst. Growth Des. 2016, 16, 808-813.
H. Shi, L. Song, H. Ma, C. Sun, K. Huang, A. Lv, W. Ye, H. Wang, S. Cai, W. Yao, Y. Zhang, R. Zheng, Z. An, W. Huang, J. Phys. Chem. Lett. 2019, 10, 595-600;
W. Jia, Q. Wang, H. Shi, Z. An, W. Huang, Chem. Eur. J. 2020, 26, 4437-4448;
J. Jin, H. Jiang, Q. Yang, L. Tang, Y. Tao, Y. Li, R. Chen, C. Zheng, Q. Fan, K. Y. Zhang, Q. Zhao, W. Huang, Nat. Commun. 2020, 11, 842.
S. Cai, H. Shi, D. Tian, H. Ma, Z. Cheng, Q. Wu, M. Gu, L. Huang, Z. An, Q. Peng, W. Huang, Adv. Funct. Mater. 2018, 28, 1705045.
Z. Yang, E. Ubba, Q. Huang, Z. Mao, W. Li, J. Chen, J. Zhao, Y. Zhang, Z. Chi, J. Mater. Chem. C 2020, 8, 7384-7392.
R. Liu, Y. J. Gao, W. J. Jin, Acta Crystallogr. B 2017, 73, 247-254.
T. Lu, F. W. Chen, J. Comput. Chem. 2012, 33, 580-592.