LncRNA FEZF1-AS1 Modulates Cancer Stem Cell Properties of Human Gastric Cancer Through miR-363-3p/HMGA2.
Animals
Cell Line, Tumor
Cell Proliferation
/ physiology
Female
HMGA2 Protein
/ genetics
Humans
Male
Mice
Mice, Nude
MicroRNAs
/ genetics
Middle Aged
Neoplastic Stem Cells
/ metabolism
RNA, Antisense
/ genetics
RNA, Long Noncoding
/ genetics
Repressor Proteins
/ genetics
Stomach Neoplasms
/ genetics
Transfection
FEZF1-AS1
GCSC
HMGA2
miR-363-3p
progression
Journal
Cell transplantation
ISSN: 1555-3892
Titre abrégé: Cell Transplant
Pays: United States
ID NLM: 9208854
Informations de publication
Date de publication:
Historique:
entrez:
9
7
2020
pubmed:
9
7
2020
medline:
29
6
2021
Statut:
ppublish
Résumé
Gastric cancer (GC) is a leading cause of cancer-related death with poor prognosis. Growing evidence has shown that long noncoding ribonucleic acid (lncRNA) FEZ family zinc finger 1 antisense RNA 1(FEZF1-AS1), an "oncogene," regulates tumor progression and supports cancer stem cell. However, the tumorigenic mechanism of FEZF1-AS1 on gastric cancer stem cell (GCSC) is yet to be investigated. Here, we discovered that FEZF1-AS1 was upregulated in GC tissues and cell lines. Knockdown of FEZF1-AS1 inhibited sphere formation and decreased expression of stem factors and markers. Moreover, FEZF1-AS1 silence also suppressed cell proliferation, viability, invasion, and migration of GCSCs. MiR-363-3p is used as a target of FEZF1-AS1, because its expression was suppressed by FEZF1-AS1 in GCSCs. FEZF1-AS1 could sponge miR-363-3p and increased the expression of high-mobility group AT-hook 2 (HMGA2). The expression of FEZF1-AS1 and miR-363-3p, as well as that of miR-363-3p and HMGA2, was negatively correlated in GC tissues. Finally, FEZF1-AS1 contributed to promotion of GCSCs progression partially through inhibition of miR-363-3p. Subcutaneous xenotransplanted tumor model revealed that silence of FEZF1-AS1 suppressed in vivo tumorigenic ability of GSCS via downregulation of HMGA2. In general, our findings clarified the critical regulatory role of FEZF1-AS1/miR-363-3p/HMGA2 axis in GCSC progression, providing a potential therapeutic target for GC.
Identifiants
pubmed: 32638620
doi: 10.1177/0963689720925059
pmc: PMC7563941
doi:
Substances chimiques
FEZF1 protein, human
0
HMGA2 Protein
0
HMGA2 protein, human
0
MIRN363 microRNA, human
0
MicroRNAs
0
RNA, Antisense
0
RNA, Long Noncoding
0
Repressor Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
963689720925059Références
Clin Cancer Res. 2018 Oct 1;24(19):4808-4819
pubmed: 29914894
Biomaterials. 2020 Jan;229:119580
pubmed: 31707296
Cancer Cell. 2018 Jan 8;33(1):137-150.e5
pubmed: 29290541
Biomed Pharmacother. 2018 Dec;108:338-346
pubmed: 30227327
Clin Cancer Res. 2008 Apr 15;14(8):2334-40
pubmed: 18413822
Ann Surg Oncol. 2015 Dec;22 Suppl 3:S915-22
pubmed: 25986864
World J Gastroenterol. 2014 Apr 28;20(16):4483-90
pubmed: 24782601
Oncol Rep. 2014 Jan;31(1):358-64
pubmed: 24247585
Theranostics. 2019 Sep 20;9(23):6809-6823
pubmed: 31660070
Future Oncol. 2015;11(17):2427-41
pubmed: 26289363
Mol Cancer. 2018 Jan 12;17(1):6
pubmed: 29329543
Int J Cancer. 2015 Mar 1;136(5):E359-86
pubmed: 25220842
Cancer Gene Ther. 2015 Feb 27;:
pubmed: 25721209
Mol Med Rep. 2018 Jan;17(1):1947-1953
pubmed: 29257211
Mol Med Rep. 2019 Feb;19(2):935-942
pubmed: 30535489
Tumour Biol. 2016 Jan;37(1):7-21
pubmed: 26446457
Cancer Lett. 2016 May 1;374(2):292-303
pubmed: 26940070
Biotechnol Adv. 2018 Jul - Aug;36(4):1094-1110
pubmed: 29559382
Biomed Pharmacother. 2017 Dec;96:1103-1108
pubmed: 29239821
Clin Cancer Res. 2019 Jun 15;25(12):3617-3629
pubmed: 30814110
Onco Targets Ther. 2016 Feb 10;9:681-97
pubmed: 26929639
Oncol Rep. 2017 Jan;37(1):185-192
pubmed: 27878307
J Pathol. 2012 Nov;228(3):391-404
pubmed: 22430847
Cancer Lett. 2013 Sep 10;338(1):110-9
pubmed: 23583679
Mol Cancer. 2017 Feb 16;16(1):39
pubmed: 28209170
Virchows Arch. 2014 Mar;464(3):367-78
pubmed: 24487788
Oncol Lett. 2015 Jul;10(1):329-336
pubmed: 26171025
Oncol Res. 2018 Dec 27;27(1):39-45
pubmed: 29510777
Pathol Int. 2012 Feb;62(2):112-9
pubmed: 22243781
Oncotarget. 2017 Oct 30;8(66):110685-110692
pubmed: 29299179
Biomed Pharmacother. 2017 Nov;95:331-338
pubmed: 28858731
Med Sci Monit. 2015 Dec 28;21:4074-80
pubmed: 26709677
J Cancer. 2017 Aug 3;8(13):2575-2586
pubmed: 28900495
Cancer. 2017 Apr 15;123(8):1303-1312
pubmed: 28117883
World J Obstet Gynecol. 2016 May 10;5(2):150-161
pubmed: 28239564
Int J Biol Sci. 2013 Jun 28;9(6):587-97
pubmed: 23847441
Nat Rev Cancer. 2013 Feb;13(2):97-110
pubmed: 23344542
Oncol Res. 2018 Oct 17;26(9):1335-1343
pubmed: 29510778
Eur Rev Med Pharmacol Sci. 2017 Oct;21(17):3850-3856
pubmed: 28975980
World J Gastroenterol. 2014 Feb 21;20(7):1635-49
pubmed: 24587643
Gastric Cancer. 2012 Oct;15(4):440-50
pubmed: 22395309
Oncotarget. 2016 Mar 1;7(9):9815-31
pubmed: 26769843
Cancer Res. 2006 Oct 1;66(19):9339-44
pubmed: 16990346
Cancer Res. 2016 Nov 1;76(21):6299-6310
pubmed: 27651312
Nature. 2001 Nov 1;414(6859):105-11
pubmed: 11689955
BMC Syst Biol. 2014 Jul 17;8:83
pubmed: 25033876
CA Cancer J Clin. 2015 Mar;65(2):87-108
pubmed: 25651787
Cell Stem Cell. 2012 Jun 14;10(6):717-728
pubmed: 22704512
Oncogene. 2019 Jun;38(23):4637-4654
pubmed: 30742067
Cell Death Dis. 2018 Jan 18;9(2):34
pubmed: 29348628
Am J Cancer Res. 2017 Apr 01;7(4):770-783
pubmed: 28469952
Biochem Biophys Res Commun. 2016 Nov 25;480(4):508-514
pubmed: 27558961
Cancer Cell. 2016 Apr 11;29(4):452-463
pubmed: 27070700
Cell Cycle. 2015;14(19):3112-23
pubmed: 26237576
Oncotarget. 2016 Sep 20;7(38):62049-62069
pubmed: 27557490