Seroprevalence of antibodies against SARS-CoV-2 among health care workers in a large Spanish reference hospital.
Adult
Antibodies, Viral
/ blood
Asymptomatic Infections
/ epidemiology
Betacoronavirus
/ genetics
COVID-19
Coronavirus Infections
/ blood
Female
Health Personnel
Humans
Male
Middle Aged
Occupational Health
Pandemics
Pneumonia, Viral
/ blood
RNA, Viral
/ blood
Risk Factors
SARS-CoV-2
Seroepidemiologic Studies
Spain
/ epidemiology
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 07 2020
08 07 2020
Historique:
received:
28
05
2020
accepted:
19
06
2020
entrez:
10
7
2020
pubmed:
10
7
2020
medline:
18
7
2020
Statut:
epublish
Résumé
Health care workers (HCW) are a high-risk population to acquire SARS-CoV-2 infection from patients or other fellow HCW. This study aims at estimating the seroprevalence against SARS-CoV-2 in a random sample of HCW from a large hospital in Spain. Of the 578 participants recruited from 28 March to 9 April 2020, 54 (9.3%, 95% CI: 7.1-12.0) were seropositive for IgM and/or IgG and/or IgA against SARS-CoV-2. The cumulative prevalence of SARS-CoV-2 infection (presence of antibodies or past or current positive rRT-PCR) was 11.2% (65/578, 95% CI: 8.8-14.1). Among those with evidence of past or current infection, 40.0% (26/65) had not been previously diagnosed with COVID-19. Here we report a relatively low seroprevalence of antibodies among HCW at the peak of the COVID-19 epidemic in Spain. A large proportion of HCW with past or present infection had not been previously diagnosed with COVID-19, which calls for active periodic rRT-PCR testing in hospital settings.
Identifiants
pubmed: 32641730
doi: 10.1038/s41467-020-17318-x
pii: 10.1038/s41467-020-17318-x
pmc: PMC7343863
doi:
Substances chimiques
Antibodies, Viral
0
RNA, Viral
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3500Subventions
Organisme : NIAID NIH HHS
ID : HHSN272201400008C
Pays : United States
Références
Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).
doi: 10.1056/NEJMoa2001017
World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19-. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (2020).
Guan, W. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. https://doi.org/10.1056/nejmoa2002032 (2020).
Day, M. Covid-19: four fifths of cases are asymptomatic, China figures indicate. BMJ m1375. https://doi.org/10.1136/bmj.m1375 (2020).
Sutton, D., Fuchs, K., D’Alton, M. & Goffman, D. Universal screening for SARS-CoV-2 in women admitted for delivery. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2009316 (2020).
Mizumoto, K., Kagaya, K., Zarebski, A. & Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance 25, 2000180 (2020).
doi: 10.2807/1560-7917.ES.2020.25.10.2000180
Ng, K. et al. COVID-19 and the risk to health care workers: a case report. Ann. Intern. Med. https://doi.org/10.7326/L20-0175 (2020).
Folgueira, M. D., Munoz-Ruiperez, C., Alonso-Lopez, M. A. & Delgado, R. SARS-CoV-2 infection in Health Care Workers in a large public hospital in Madrid, Spain, during March 2020. medRxiv 2020.04.07.20055723. https://doi.org/10.1101/2020.04.07.20055723 (2020).
Chen, C. & Zhao, B. Makeshift hospitals for COVID-19 patients: where health-care workers and patients need sufficient ventilation for more protection. J. Hosp. Infect. https://doi.org/10.1016/j.jhin.2020.03.008 (2020).
Black, J. R. M., Bailey, C. & Swanton, C. COVID-19: the case for health-care worker screening to prevent hospital transmission. Lancet (London, England). https://doi.org/10.1016/S0140-6736(20)30917-X (2020).
Huang, A. T. et al. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv. 2020;2020.04.14.20065771. https://doi.org/10.1101/2020.04.14.20065771 (2020).
Kwok, K. O., Lai, F., Wei, W. I., Wong, S. Y. S. & Tang, J. Herd immunity – estimating the level required to halt the COVID-19 epidemics in affected countries. J. Infect. https://doi.org/10.1016/j.jinf.2020.03.027 (2020).
Flaxman, S. et al. Report 13: estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries. Imperial College London. https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-13-europe-npi-impact/ . Accessed 2nd July 2020.
Ministry of Science and Innovation. ESTUDIO ENE-COVID19: PRIMERA RONDA ESTUDIO NACIONAL DE SERO-EPIDEMIOLOGÍA DE LA INFECCIÓN POR SARS-COV-2 EN ESPAÑA. https://www.mscbs.gob.es/ciudadanos/ene-covid/docs/ESTUDIO_ENE-COVID19_PRIMERA_RONDA_INFORME_PRELIMINAR.pdf (2020). Accessed 2nd July 2020.
Tian, S. et al. Characteristics of COVID-19 infection in Beijing. J. Infect. 80, 401–406 (2020).
doi: 10.1016/j.jinf.2020.02.018
Htun, H. L. et al. Responding to the COVID-19 outbreak in Singapore: staff protection and staff temperature and sickness surveillance systems. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa468 (2020).
Vetter, P. et al. Clinical features of covid-19. BMJ 369, m1470 (2020).
doi: 10.1136/bmj.m1470
Pan, L. et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China. Am. J. Gastroenterol. 1. https://doi.org/10.14309/ajg.0000000000000620 (2020).
Houghton, C. et al. Barriers and facilitators to healthcare workers’ adherence with infection prevention and control (IPC) guidelines for respiratory infectious diseases: a rapid qualitative evidence synthesis. Cochrane Database Syst. Rev. 4, CD013582 (2020).
pubmed: 32315451
Ma, H. et al. COVID-19 diagnosis and study of serum SARS-CoV-2 specific IgA, IgM and IgG by a quantitative and sensitive immunoassay. medRxiv 2020.04.17.20064907. https://doi.org/10.1101/2020.04.17.20064907 (2020).
Wilder-Smith, A. et al. Asymptomatic SARS coronavirus infection among healthcare workers, Singapore. Emerg. Infect. Dis. 11, 1142–1145 (2005).
doi: 10.3201/eid1107.041165
Tan, W. et al. Viral kinetics and antibody responses in patients with COVID-19. medRxiv 2020.03.24.20042382. https://doi.org/10.1101/2020.03.24.20042382 (2020).
Wu, F. et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv 2020.03.30.20047365. https://doi.org/10.1101/2020.03.30.20047365 (2020).
Dobaño C., et al. Highly sensitive and specific multiplex antibody assays to quantify immunoglobulins M, A and G against SARS-CoV-2 antigens. bioRxiv 2020.06.11.147363; https://doi.org/10.1101/2020.06.11.1 (2020).
Burbelo, P. D. et al. Sensitivity in detection of antibodies to nucleocapsid and spike proteins of severe acute respiratory syndrome coronavirus 2 in patients with coronavirus disease 2019. J. Infect. Dis. https://doi.org/10.1093/infdis/jiaa273 In Press (2020).
Li, Z. et al. Development and clinical application of A Rapid IgM‐IgG combined antibody test for SARS‐CoV‐2 infection diagnosis. J. Med. Virol. https://doi.org/10.1002/jmv.25727 (2020).
Hsueh, P. R., Huang, L. M., Chen, P. J., Kao, C. L. & Yang, P. C. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin. Microbiol. Infect. 10, 1062–1066 (2004).
doi: 10.1111/j.1469-0691.2004.01009.x
Wang, X. et al. Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously. Int. J. Infect. Dis. https://doi.org/10.1016/j.ijid.2020.04.023 (2020).
doi: 10.1016/j.ijid.2020.04.023
pubmed: 32623082
pmcid: 7334933
Mohanty, A., Kabi, A. & Mohanty, A. P. Health problems in healthcare workers: a review. J. Fam. Med. Prim. Care 8, 2568–2572 (2019).
Hospital Clinic de Barcelona. About the Clinic. https://www.clinicbarcelona.org/en/assistance/about-clinic . Accessed 2nd July 2020.
Harris, P. A. et al. Research electronic data capture (REDCap)-A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 (2009).
doi: 10.1016/j.jbi.2008.08.010
Ma, H. et al. Serum IgA, IgM, and IgG responses in COVID-19. Cell. Mol. Immunol. 1–3. https://doi.org/10.1038/s41423-020-0474-z (2020).
Berry, J. D. et al. Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. MAbs 2, 53–66 (2010).
doi: 10.4161/mabs.2.1.10788
Jiang, S., Hillyer, C. & Du, L. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Trends Immunol. https://doi.org/10.1016/j.it.2020.03.007 (2020).
doi: 10.1016/j.it.2020.03.007
pubmed: 32362491
pmcid: 7271084
Callow, K. A., Parry, H. F., Sergeant, M. & Tyrrell, D. A. J. The time course of the immune response to experimental coronavirus infection of man. Epidemiol. Infect. 105, 435–446 (1990).
doi: 10.1017/S0950268800048019
Bao, L. et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv 2020.03.13.990226. https://doi.org/10.1101/2020.03.13.990226 (2020).
Liu, W. et al. Two‐year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J. Infect. Dis. 193, 792–795 (2006).
doi: 10.1086/500469
Stadlbauer, D. et al. SARS-CoV-2 seroconversion in humans: a detailed protocol for a serological assay, antigen production, and test setup. Curr. Protoc. Microbiol 57, e100 (2020).
doi: 10.1002/cpmc.100
Vidal, M., Aguilar, R., Campo, J. J. & Dobaño, C. Development of quantitative suspension array assays for six immunoglobulin isotypes and subclasses to multiple Plasmodium falciparum antigens. J. Immunol. Methods 455, 41–54 (2018).
doi: 10.1016/j.jim.2018.01.009