Neur1 and Neur2 are required for hippocampus-dependent spatial memory and synaptic plasticity.


Journal

Hippocampus
ISSN: 1098-1063
Titre abrégé: Hippocampus
Pays: United States
ID NLM: 9108167

Informations de publication

Date de publication:
11 2020
Historique:
received: 15 03 2020
revised: 03 06 2020
accepted: 08 06 2020
pubmed: 10 7 2020
medline: 27 11 2021
entrez: 10 7 2020
Statut: ppublish

Résumé

Neur1 and Neur2, mouse homologs of the Drosophila neur gene, consist of two neuralized homology repeat domains and a RING domain. Both Neur1 and Neur2 are expressed in the whole adult brain and encode E3 ubiquitin ligases, which play a crucial role in the Notch signaling pathways. A previous study reported that overexpression of Neur1 enhances hippocampus-dependent memory, whereas the role of Neur2 remains largely unknown. Here, we aimed to elucidate the respective roles of Neur1 and Neur2 in hippocampus-dependent memory using three lines of genetically modified mice: Neur1 knock-out, Neur2 knock-out, and Neur1 and Neur2 double knock-out (D-KO). Our results showed that spatial memory was impaired when both Neur1 and Neur2 were deleted, but not in the individual knock-out of either Neur1 or Neur2. In addition, basal synaptic properties estimated by input-output relationships and paired-pulse facilitation did not change, but a form of long-term potentiation that requires protein synthesis was specifically impaired in the D-KO mice. These results collectively suggest that Neur1 and Neur2 are crucially involved in hippocampus-dependent spatial memory and synaptic plasticity.

Identifiants

pubmed: 32644222
doi: 10.1002/hipo.23247
doi:

Substances chimiques

Nerve Tissue Proteins 0
Neurl protein, mouse 0
Neurl2 protein, mouse 0
Repressor Proteins 0
Ubiquitin-Protein Ligase Complexes EC 2.3.2.23

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1158-1166

Informations de copyright

© 2020 Wiley Periodicals LLC.

Références

Aggleton, J. P., Hunt, P. R., & Rawlins, J. N. (1986). The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behavioural Brain Research, 19(2), 133-146. https://doi.org/10.1016/0166-4328(86)90011-2
Anderson, W. W., & Collingridge, G. L. (2007). Capabilities of the WinLTP data acquisition program extending beyond basic LTP experimental functions. Journal of Neuroscience Methods, 162(1-2), 346-356. https://doi.org/10.1016/j.jneumeth.2006.12.018
Andersson, E. R., Sandberg, R., & Lendahl, U. (2011). Notch signaling: Simplicity in design, versatility in function. Development, 138(17), 3593-3612. https://doi.org/10.1242/dev.063610
Barnet, R. C., & Hunt, P. S. (2005). Trace and long-delay fear conditioning in the developing rat. Learning & Behavior, 33(4), 437-443. https://doi.org/10.3758/bf03193182
Bear, M. F., Cooke, S. F., Giese, K. P., Kaang, B. K., Kennedy, M. B., Kim, J. I., … Park, P. (2018). In memoriam: John Lisman - commentaries on CaMKII as a memory molecule. Molecular Brain, 11, 76. https://doi.org/10.1186/s13041-018-0419-y
Bolos, V., Grego-Bessa, J., & de la Pompa, J. L. (2007). Notch signaling in development and cancer. Endocrine Reviews, 28(3), 339-363. https://doi.org/10.1210/er.2006-0046
Brai, E., Marathe, S., Astori, S., Fredj, N. B., Perry, E., Lamy, C., … Alberi, L. (2015). Notch1 regulates hippocampal plasticity through interaction with the Reelin pathway, glutamatergic transmission and CREB signaling. Frontiers in Cellular Neuroscience, 9, 447. https://doi.org/10.3389/fncel.2015.00447
Brasted, P. J., Bussey, T. J., Murray, E. A., & Wise, S. P. (2003). Role of the hippocampal system in associative learning beyond the spatial domain. Brain, 126(Pt 5), 1202-1223. https://doi.org/10.1093/brain/awg103
Chakraborty, M., Paul, B. K., Nayak, T., Das, A., Jana, N. R., & Bhutani, S. (2015). The E3 ligase ube3a is required for learning in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 462(1), 71-77. https://doi.org/10.1016/j.bbrc.2015.04.110
Cho, J., Yu, N. K., Choi, J. H., Sim, S. E., Kang, S. J., Kwak, C., … Kaang, B. K. (2015). Multiple repressive mechanisms in the hippocampus during memory formation. Science, 350(6256), 82-87. https://doi.org/10.1126/science.aac7368
Choi, J. H., Sim, S. E., Kim, J. I., Choi, D. I., Oh, J., Ye, S., … Kaang, B. K. (2018). Interregional synaptic maps among engram cells underlie memory formation. Science, 360(6387), 430-435. https://doi.org/10.1126/science.aas9204
Clement, Y., Calatayud, F., & Belzung, C. (2002). Genetic basis of anxiety-like behaviour: A critical review. Brain Research Bulletin, 57(1), 57-71. https://doi.org/10.1016/s0361-9230(01)00637-2
Cornwell, B. R., Johnson, L. L., Holroyd, T., Carver, F. W., & Grillon, C. (2008). Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze. The Journal of Neuroscience, 28(23), 5983-5990. https://doi.org/10.1523/JNEUROSCI.5001-07.2008
Eichenbaum, H. (2017). The role of the hippocampus in navigation is memory. Journal of Neurophysiology, 117(4), 1785-1796. https://doi.org/10.1152/jn.00005.2017
Huang, Y. Y., & Kandel, E. R. (1994). Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learning & Memory, 1(1), 74-82. https://doi.org/10.1101/lm.1.1.74
Kim, J. J., & Jung, M. W. (2006). Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review. Neuroscience and Biobehavioral Reviews, 30(2), 188-202. https://doi.org/10.1016/j.neubiorev.2005.06.005
Kleiman, R. J., Chapin, D. S., Christoffersen, C., Freeman, J., Fonseca, K. R., Geoghegan, K. F., … Schmidt, C. J. (2012). Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo. The Journal of Pharmacology and Experimental Therapeutics, 341(2), 396-409. https://doi.org/10.1124/jpet.111.191353
Koo, B. K., Yoon, M. J., Yoon, K. J., Im, S. K., Kim, Y. Y., Kim, C. H., … Kong, Y. Y. (2007). An obligatory role of mind bomb-1 in notch signaling of mammalian development. PLoS One, 2(11), e1221. https://doi.org/10.1371/journal.pone.0001221
Koutelou, E., Sato, S., Tomomori-Sato, C., Florens, L., Swanson, S. K., Washburn, M. P., … Moschonas, N. K. (2008). Neuralized-like 1 (Neurl1) targeted to the plasma membrane by N-myristoylation regulates the Notch ligand Jagged1. Journal of Biological Chemistry, 283(7), 3846-3853. https://doi.org/10.1074/jbc.M706974200
Lim, C. S., Nam, H. J., Lee, J., Kim, D., Choi, J. E., Kang, S. J., … Kaang, B. K. (2017). PKCalpha-mediated phosphorylation of LSD1 is required for presynaptic plasticity and hippocampal learning and memory. Scientific Reports, 7(1), 4912. https://doi.org/10.1038/s41598-017-05239-7
Liu, S., & Boulianne, G. L. (2017). The NHR domains of neuralized and related proteins: Beyond Notch signalling. Cellular Signalling, 29, 62-68. https://doi.org/10.1016/j.cellsig.2016.10.004
Moita, M. A., Rosis, S., Zhou, Y., LeDoux, J. E., & Blair, H. T. (2004). Putting fear in its place: Remapping of hippocampal place cells during fear conditioning. The Journal of Neuroscience, 24(31), 7015-7023. https://doi.org/10.1523/JNEUROSCI.5492-03.2004
Nakamura, H., Yoshida, M., Tsuiki, H., Ito, K., Ueno, M., Nakao, M., … Saya, H. (1998). Identification of a human homolog of the drosophila neuralized gene within the 10q25.1 malignant astrocytoma deletion region. Oncogene, 16(8), 1009-1019. https://doi.org/10.1038/sj.onc.1201618
Park, P., Kang, H., Sanderson, T. M., Bortolotto, Z. A., Georgiou, J., Zhuo, M., … Collingridge, G. L. (2018). The role of calcium-permeable AMPARs in long-term potentiation at principal neurons in the rodent hippocampus. Frontiers in Synaptic Neuroscience, 10, 42. https://doi.org/10.3389/fnsyn.2018.00042
Park, P., Sanderson, T. M., Amici, M., Choi, S. L., Bortolotto, Z. A., Zhuo, M., … Collingridge, G. L. (2016). Calcium-permeable AMPA receptors mediate the induction of the protein kinase A-dependent component of long-term potentiation in the hippocampus. The Journal of Neuroscience, 36(2), 622-631. https://doi.org/10.1523/JNEUROSCI.3625-15.2016
Park, P., Volianskis, A., Sanderson, T. M., Bortolotto, Z. A., Jane, D. E., Zhuo, M., … Collingridge, G. L. (2014). NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1633), 20130131. https://doi.org/10.1098/rstb.2013.0131
Pavlopoulos, E., Anezaki, M., & Skoulakis, E. M. (2008). Neuralized is expressed in the alpha/beta lobes of adult drosophila mushroom bodies and facilitates olfactory long-term memory formation. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14674-14679. https://doi.org/10.1073/pnas.0801605105
Pavlopoulos, E., Kokkinaki, M., Koutelou, E., Mitsiadis, T. A., Prinos, P., Delidakis, C., … Moschonas, N. K. (2002). Cloning, chromosomal organization and expression analysis of Neurl, the mouse homolog of Drosophila melanogaster neuralized gene. Biochimica et Biophysica Acta, 1574(3), 375-382. https://doi.org/10.1016/s0167-4781(01)00330-x
Pavlopoulos, E., Trifilieff, P., Chevaleyre, V., Fioriti, L., Zairis, S., Pagano, A., … Kandel, E. R. (2011). Neuralized1 activates CPEB3: A function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell, 147(6), 1369-1383. https://doi.org/10.1016/j.cell.2011.09.056
Price, B. D., Chang, Z., Smith, R., Bockheim, S., & Laughon, A. (1993). The drosophila neuralized gene encodes a C3hc4 zinc-finger. EMBO Journal, 12(6), 2411-2418. https://doi.org/10.1002/j.1460-2075.1993.tb05895.x
Ruan, Y., Tecott, L., Jiang, M. M., Jan, L. Y., & Jan, Y. N. (2001). Ethanol hypersensitivity and olfactory discrimination defect in mice lacking a homolog of drosophila neuralized. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9907-9912. https://doi.org/10.1073/pnas.171321098
Rullinkov, G., Tamme, R., Sarapuu, A., Lauren, J., Sepp, M., Palm, K., & Timmusk, T. (2009). Neuralized-2: Expression in human and rodents and interaction with Delta-like ligands. Biochemical and Biophysical Research Communications, 389(3), 420-425. https://doi.org/10.1016/j.bbrc.2009.08.147
Song, R., Koo, B. K., Yoon, K. J., Yoon, M. J., Yoo, K. W., Kim, H. T., … Kong, Y. Y. (2006). Neuralized-2 regulates a Notch ligand in cooperation with Mind bomb-1. The Journal of Biological Chemistry, 281(47), 36391-36400. https://doi.org/10.1074/jbc.M606601200
Sun, J., Zhu, G., Liu, Y., Standley, S., Ji, A., Tunuguntla, R., … Bi, X. (2015). UBE3A regulates synaptic plasticity and learning and memory by controlling SK2 channel endocytosis. Cell Reports, 12(3), 449-461. https://doi.org/10.1016/j.celrep.2015.06.023
Taal, K., Tuvikene, J., Rullinkov, G., Piirsoo, M., Sepp, M., Neuman, T., … Timmusk, T. (2019). Neuralized family member NEURL1 is a ubiquitin ligase for the cGMP-specific phosphodiesterase 9A. Scientific Reports, 9, 7104. https://doi.org/10.1038/s41598-019-43069-x
Timmusk, T., Palm, K., Belluardo, N., Mudo, G., & Neuman, T. (2002). Dendritic localization of mammalian neuralized mRNA encoding a protein with transcription repression activities. Molecular and Cellular Neuroscience, 20(4), 649-668. https://doi.org/10.1006/mcne.2002.1148
Tu, M., Zhu, P., Hu, S., Wang, W., Su, Z., Guan, J., … Zheng, W. (2017). Notch1 signaling activation contributes to adult hippocampal neurogenesis following traumatic brain injury. Medical Science Monitor, 23, 5480-5487. https://doi.org/10.12659/msm.907160
Wang, Y., Chan, S. L., Miele, L., Yao, P. J., Mackes, J., Ingram, D. K., … Furukawa, K. (2004). Involvement of Notch signaling in hippocampal synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 101(25), 9458-9462. https://doi.org/10.1073/pnas.0308126101
Yeh, E., Dermer, M., Commisso, C., Zhou, L., McGlade, C. J., & Boulianne, G. L. (2001). Neuralized functions as an E3 ubiquitin ligase during drosophila development. Current Biology, 11(21), 1675-1679. https://doi.org/10.1016/s0960-9822(01)00527-9
Zhang, Q., Li, Y., Zhang, L., Yang, N., Meng, J., Zuo, P., … Zhu, D. (2013). E3 ubiquitin ligase RNF13 involves spatial learning and assembly of the SNARE complex. Cellular and Molecular Life Sciences, 70(1), 153-165. https://doi.org/10.1007/s00018-012-1103-5

Auteurs

Jaehyun Lee (J)

Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, South Korea.

Ki-Jun Yoon (KJ)

Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.

Pojeong Park (P)

Neurobiology Laboratory, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.

Chaery Lee (C)

Neurobiology Laboratory, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.

Min Jung Kim (MJ)

Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, South Korea.

Dae Hee Han (DH)

Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, South Korea.

Ji-Il Kim (JI)

Neurobiology Laboratory, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.

Somi Kim (S)

Neurobiology Laboratory, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.

Hye-Ryeon Lee (HR)

Neurobiology Laboratory, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.

Yeseul Lee (Y)

Neurobiology Laboratory, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.

Eun-Hae Jang (EH)

Neurobiology Laboratory, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.

Hyoung-Gon Ko (HG)

Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.

Young-Yun Kong (YY)

School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.

Bong-Kiun Kaang (BK)

Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, South Korea.
Neurobiology Laboratory, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH