Neur1 and Neur2 are required for hippocampus-dependent spatial memory and synaptic plasticity.
E3 ligase
Neur1
Neur2
hippocampus-dependent learning and memory
long-term potentiation
spatial memory
synaptic plasticity
ubiquitination
Journal
Hippocampus
ISSN: 1098-1063
Titre abrégé: Hippocampus
Pays: United States
ID NLM: 9108167
Informations de publication
Date de publication:
11 2020
11 2020
Historique:
received:
15
03
2020
revised:
03
06
2020
accepted:
08
06
2020
pubmed:
10
7
2020
medline:
27
11
2021
entrez:
10
7
2020
Statut:
ppublish
Résumé
Neur1 and Neur2, mouse homologs of the Drosophila neur gene, consist of two neuralized homology repeat domains and a RING domain. Both Neur1 and Neur2 are expressed in the whole adult brain and encode E3 ubiquitin ligases, which play a crucial role in the Notch signaling pathways. A previous study reported that overexpression of Neur1 enhances hippocampus-dependent memory, whereas the role of Neur2 remains largely unknown. Here, we aimed to elucidate the respective roles of Neur1 and Neur2 in hippocampus-dependent memory using three lines of genetically modified mice: Neur1 knock-out, Neur2 knock-out, and Neur1 and Neur2 double knock-out (D-KO). Our results showed that spatial memory was impaired when both Neur1 and Neur2 were deleted, but not in the individual knock-out of either Neur1 or Neur2. In addition, basal synaptic properties estimated by input-output relationships and paired-pulse facilitation did not change, but a form of long-term potentiation that requires protein synthesis was specifically impaired in the D-KO mice. These results collectively suggest that Neur1 and Neur2 are crucially involved in hippocampus-dependent spatial memory and synaptic plasticity.
Substances chimiques
Nerve Tissue Proteins
0
Neurl protein, mouse
0
Neurl2 protein, mouse
0
Repressor Proteins
0
Ubiquitin-Protein Ligase Complexes
EC 2.3.2.23
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1158-1166Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Aggleton, J. P., Hunt, P. R., & Rawlins, J. N. (1986). The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behavioural Brain Research, 19(2), 133-146. https://doi.org/10.1016/0166-4328(86)90011-2
Anderson, W. W., & Collingridge, G. L. (2007). Capabilities of the WinLTP data acquisition program extending beyond basic LTP experimental functions. Journal of Neuroscience Methods, 162(1-2), 346-356. https://doi.org/10.1016/j.jneumeth.2006.12.018
Andersson, E. R., Sandberg, R., & Lendahl, U. (2011). Notch signaling: Simplicity in design, versatility in function. Development, 138(17), 3593-3612. https://doi.org/10.1242/dev.063610
Barnet, R. C., & Hunt, P. S. (2005). Trace and long-delay fear conditioning in the developing rat. Learning & Behavior, 33(4), 437-443. https://doi.org/10.3758/bf03193182
Bear, M. F., Cooke, S. F., Giese, K. P., Kaang, B. K., Kennedy, M. B., Kim, J. I., … Park, P. (2018). In memoriam: John Lisman - commentaries on CaMKII as a memory molecule. Molecular Brain, 11, 76. https://doi.org/10.1186/s13041-018-0419-y
Bolos, V., Grego-Bessa, J., & de la Pompa, J. L. (2007). Notch signaling in development and cancer. Endocrine Reviews, 28(3), 339-363. https://doi.org/10.1210/er.2006-0046
Brai, E., Marathe, S., Astori, S., Fredj, N. B., Perry, E., Lamy, C., … Alberi, L. (2015). Notch1 regulates hippocampal plasticity through interaction with the Reelin pathway, glutamatergic transmission and CREB signaling. Frontiers in Cellular Neuroscience, 9, 447. https://doi.org/10.3389/fncel.2015.00447
Brasted, P. J., Bussey, T. J., Murray, E. A., & Wise, S. P. (2003). Role of the hippocampal system in associative learning beyond the spatial domain. Brain, 126(Pt 5), 1202-1223. https://doi.org/10.1093/brain/awg103
Chakraborty, M., Paul, B. K., Nayak, T., Das, A., Jana, N. R., & Bhutani, S. (2015). The E3 ligase ube3a is required for learning in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 462(1), 71-77. https://doi.org/10.1016/j.bbrc.2015.04.110
Cho, J., Yu, N. K., Choi, J. H., Sim, S. E., Kang, S. J., Kwak, C., … Kaang, B. K. (2015). Multiple repressive mechanisms in the hippocampus during memory formation. Science, 350(6256), 82-87. https://doi.org/10.1126/science.aac7368
Choi, J. H., Sim, S. E., Kim, J. I., Choi, D. I., Oh, J., Ye, S., … Kaang, B. K. (2018). Interregional synaptic maps among engram cells underlie memory formation. Science, 360(6387), 430-435. https://doi.org/10.1126/science.aas9204
Clement, Y., Calatayud, F., & Belzung, C. (2002). Genetic basis of anxiety-like behaviour: A critical review. Brain Research Bulletin, 57(1), 57-71. https://doi.org/10.1016/s0361-9230(01)00637-2
Cornwell, B. R., Johnson, L. L., Holroyd, T., Carver, F. W., & Grillon, C. (2008). Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze. The Journal of Neuroscience, 28(23), 5983-5990. https://doi.org/10.1523/JNEUROSCI.5001-07.2008
Eichenbaum, H. (2017). The role of the hippocampus in navigation is memory. Journal of Neurophysiology, 117(4), 1785-1796. https://doi.org/10.1152/jn.00005.2017
Huang, Y. Y., & Kandel, E. R. (1994). Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learning & Memory, 1(1), 74-82. https://doi.org/10.1101/lm.1.1.74
Kim, J. J., & Jung, M. W. (2006). Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review. Neuroscience and Biobehavioral Reviews, 30(2), 188-202. https://doi.org/10.1016/j.neubiorev.2005.06.005
Kleiman, R. J., Chapin, D. S., Christoffersen, C., Freeman, J., Fonseca, K. R., Geoghegan, K. F., … Schmidt, C. J. (2012). Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo. The Journal of Pharmacology and Experimental Therapeutics, 341(2), 396-409. https://doi.org/10.1124/jpet.111.191353
Koo, B. K., Yoon, M. J., Yoon, K. J., Im, S. K., Kim, Y. Y., Kim, C. H., … Kong, Y. Y. (2007). An obligatory role of mind bomb-1 in notch signaling of mammalian development. PLoS One, 2(11), e1221. https://doi.org/10.1371/journal.pone.0001221
Koutelou, E., Sato, S., Tomomori-Sato, C., Florens, L., Swanson, S. K., Washburn, M. P., … Moschonas, N. K. (2008). Neuralized-like 1 (Neurl1) targeted to the plasma membrane by N-myristoylation regulates the Notch ligand Jagged1. Journal of Biological Chemistry, 283(7), 3846-3853. https://doi.org/10.1074/jbc.M706974200
Lim, C. S., Nam, H. J., Lee, J., Kim, D., Choi, J. E., Kang, S. J., … Kaang, B. K. (2017). PKCalpha-mediated phosphorylation of LSD1 is required for presynaptic plasticity and hippocampal learning and memory. Scientific Reports, 7(1), 4912. https://doi.org/10.1038/s41598-017-05239-7
Liu, S., & Boulianne, G. L. (2017). The NHR domains of neuralized and related proteins: Beyond Notch signalling. Cellular Signalling, 29, 62-68. https://doi.org/10.1016/j.cellsig.2016.10.004
Moita, M. A., Rosis, S., Zhou, Y., LeDoux, J. E., & Blair, H. T. (2004). Putting fear in its place: Remapping of hippocampal place cells during fear conditioning. The Journal of Neuroscience, 24(31), 7015-7023. https://doi.org/10.1523/JNEUROSCI.5492-03.2004
Nakamura, H., Yoshida, M., Tsuiki, H., Ito, K., Ueno, M., Nakao, M., … Saya, H. (1998). Identification of a human homolog of the drosophila neuralized gene within the 10q25.1 malignant astrocytoma deletion region. Oncogene, 16(8), 1009-1019. https://doi.org/10.1038/sj.onc.1201618
Park, P., Kang, H., Sanderson, T. M., Bortolotto, Z. A., Georgiou, J., Zhuo, M., … Collingridge, G. L. (2018). The role of calcium-permeable AMPARs in long-term potentiation at principal neurons in the rodent hippocampus. Frontiers in Synaptic Neuroscience, 10, 42. https://doi.org/10.3389/fnsyn.2018.00042
Park, P., Sanderson, T. M., Amici, M., Choi, S. L., Bortolotto, Z. A., Zhuo, M., … Collingridge, G. L. (2016). Calcium-permeable AMPA receptors mediate the induction of the protein kinase A-dependent component of long-term potentiation in the hippocampus. The Journal of Neuroscience, 36(2), 622-631. https://doi.org/10.1523/JNEUROSCI.3625-15.2016
Park, P., Volianskis, A., Sanderson, T. M., Bortolotto, Z. A., Jane, D. E., Zhuo, M., … Collingridge, G. L. (2014). NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1633), 20130131. https://doi.org/10.1098/rstb.2013.0131
Pavlopoulos, E., Anezaki, M., & Skoulakis, E. M. (2008). Neuralized is expressed in the alpha/beta lobes of adult drosophila mushroom bodies and facilitates olfactory long-term memory formation. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14674-14679. https://doi.org/10.1073/pnas.0801605105
Pavlopoulos, E., Kokkinaki, M., Koutelou, E., Mitsiadis, T. A., Prinos, P., Delidakis, C., … Moschonas, N. K. (2002). Cloning, chromosomal organization and expression analysis of Neurl, the mouse homolog of Drosophila melanogaster neuralized gene. Biochimica et Biophysica Acta, 1574(3), 375-382. https://doi.org/10.1016/s0167-4781(01)00330-x
Pavlopoulos, E., Trifilieff, P., Chevaleyre, V., Fioriti, L., Zairis, S., Pagano, A., … Kandel, E. R. (2011). Neuralized1 activates CPEB3: A function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell, 147(6), 1369-1383. https://doi.org/10.1016/j.cell.2011.09.056
Price, B. D., Chang, Z., Smith, R., Bockheim, S., & Laughon, A. (1993). The drosophila neuralized gene encodes a C3hc4 zinc-finger. EMBO Journal, 12(6), 2411-2418. https://doi.org/10.1002/j.1460-2075.1993.tb05895.x
Ruan, Y., Tecott, L., Jiang, M. M., Jan, L. Y., & Jan, Y. N. (2001). Ethanol hypersensitivity and olfactory discrimination defect in mice lacking a homolog of drosophila neuralized. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9907-9912. https://doi.org/10.1073/pnas.171321098
Rullinkov, G., Tamme, R., Sarapuu, A., Lauren, J., Sepp, M., Palm, K., & Timmusk, T. (2009). Neuralized-2: Expression in human and rodents and interaction with Delta-like ligands. Biochemical and Biophysical Research Communications, 389(3), 420-425. https://doi.org/10.1016/j.bbrc.2009.08.147
Song, R., Koo, B. K., Yoon, K. J., Yoon, M. J., Yoo, K. W., Kim, H. T., … Kong, Y. Y. (2006). Neuralized-2 regulates a Notch ligand in cooperation with Mind bomb-1. The Journal of Biological Chemistry, 281(47), 36391-36400. https://doi.org/10.1074/jbc.M606601200
Sun, J., Zhu, G., Liu, Y., Standley, S., Ji, A., Tunuguntla, R., … Bi, X. (2015). UBE3A regulates synaptic plasticity and learning and memory by controlling SK2 channel endocytosis. Cell Reports, 12(3), 449-461. https://doi.org/10.1016/j.celrep.2015.06.023
Taal, K., Tuvikene, J., Rullinkov, G., Piirsoo, M., Sepp, M., Neuman, T., … Timmusk, T. (2019). Neuralized family member NEURL1 is a ubiquitin ligase for the cGMP-specific phosphodiesterase 9A. Scientific Reports, 9, 7104. https://doi.org/10.1038/s41598-019-43069-x
Timmusk, T., Palm, K., Belluardo, N., Mudo, G., & Neuman, T. (2002). Dendritic localization of mammalian neuralized mRNA encoding a protein with transcription repression activities. Molecular and Cellular Neuroscience, 20(4), 649-668. https://doi.org/10.1006/mcne.2002.1148
Tu, M., Zhu, P., Hu, S., Wang, W., Su, Z., Guan, J., … Zheng, W. (2017). Notch1 signaling activation contributes to adult hippocampal neurogenesis following traumatic brain injury. Medical Science Monitor, 23, 5480-5487. https://doi.org/10.12659/msm.907160
Wang, Y., Chan, S. L., Miele, L., Yao, P. J., Mackes, J., Ingram, D. K., … Furukawa, K. (2004). Involvement of Notch signaling in hippocampal synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 101(25), 9458-9462. https://doi.org/10.1073/pnas.0308126101
Yeh, E., Dermer, M., Commisso, C., Zhou, L., McGlade, C. J., & Boulianne, G. L. (2001). Neuralized functions as an E3 ubiquitin ligase during drosophila development. Current Biology, 11(21), 1675-1679. https://doi.org/10.1016/s0960-9822(01)00527-9
Zhang, Q., Li, Y., Zhang, L., Yang, N., Meng, J., Zuo, P., … Zhu, D. (2013). E3 ubiquitin ligase RNF13 involves spatial learning and assembly of the SNARE complex. Cellular and Molecular Life Sciences, 70(1), 153-165. https://doi.org/10.1007/s00018-012-1103-5