Data-driven fault detection methods for detecting small-magnitude faults in anaerobic digestion process.


Journal

Water science and technology : a journal of the International Association on Water Pollution Research
ISSN: 0273-1223
Titre abrégé: Water Sci Technol
Pays: England
ID NLM: 9879497

Informations de publication

Date de publication:
Apr 2020
Historique:
entrez: 10 7 2020
pubmed: 10 7 2020
medline: 14 7 2020
Statut: ppublish

Résumé

Early detection of small-magnitude faults in anaerobic digestion (AD) processes is a mandatory step for preventing serious consequence in the future. Since volatile fatty acids (VFA) accumulation is widely suggested as a process health indicator, a VFA soft-sensor was developed based on support vector machine (SVM) and used for generating the residuals by comparing real and predicted VFA. The estimated residual signal was applied to univariate statistical control charts such as cumulative sum (CUSUM) and square prediction error (SPE) to detect the faults. A principal component analysis (PCA) model was also developed for comparison with the aforementioned approach. The proposed framework showed excellent performance for detecting small-magnitude faults in the state parameters of AD processes.

Identifiants

pubmed: 32644966
doi: 10.2166/wst.2020.026
doi:

Substances chimiques

Fatty Acids, Volatile 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1740-1748

Auteurs

Pezhman Kazemi (P)

Universitat Rovira i Virgili, Departament d'Enginyeria Química, Avda. Paisos Catalans, 26, 43007 Tarragona, Spain E-mail: pezhman.kazemi@urv.cat.

Jaume Giralt (J)

Universitat Rovira i Virgili, Departament d'Enginyeria Química, Avda. Paisos Catalans, 26, 43007 Tarragona, Spain E-mail: pezhman.kazemi@urv.cat.

Christophe Bengoa (C)

Universitat Rovira i Virgili, Departament d'Enginyeria Química, Avda. Paisos Catalans, 26, 43007 Tarragona, Spain E-mail: pezhman.kazemi@urv.cat.

Jean-Philippe Steyer (JP)

LBE, Univ Montpellier, INRA, 102 avenue des Etangs, 11100 Narbonne, France.

Articles similaires

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Enhancing wind erosion risk assessment through remote sensing techniques.

Abdolhossein Boali, Narges Kariminejad, Mohsen Hosseinalizadeh
1.00
Wind Remote Sensing Technology Risk Assessment Iran Environmental Monitoring
Animals Rumen Methane Fermentation Cannabis
Humans Cellular Senescence Plaque, Atherosclerotic Computational Biology Gene Expression Profiling

Classifications MeSH