Effective 1D Time-Dependent Schrödinger Equations for 3D Geometrically Correlated Systems.

constriction dimensionality reduction geometric correlations nanojunction quantum confinement quantum electron transport stochastic Schrödinger equations

Journal

Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929

Informations de publication

Date de publication:
07 Jul 2020
Historique:
received: 10 05 2020
revised: 25 06 2020
accepted: 01 07 2020
entrez: 11 7 2020
pubmed: 11 7 2020
medline: 11 7 2020
Statut: epublish

Résumé

The so-called Born-Huang ansatz is a fundamental tool in the context of ab-initio molecular dynamics, viz., it allows effectively separating fast and slow degrees of freedom and thus treating electrons and nuclei with different mathematical footings. Here, we consider the use of a Born-Huang-like expansion of the three-dimensional time-dependent Schrödinger equation to separate transport and confinement degrees of freedom in electron transport problems that involve geometrical constrictions. The resulting scheme consists of an eigenstate problem for the confinement degrees of freedom (in the transverse direction) whose solution constitutes the input for the propagation of a set of coupled one-dimensional equations of motion for the transport degree of freedom (in the longitudinal direction). This technique achieves quantitative accuracy using an order less computational resources than the full dimensional simulation for a typical two-dimensional geometrical constriction and upto three orders for three-dimensional constriction.

Identifiants

pubmed: 32645915
pii: ma13133033
doi: 10.3390/ma13133033
pmc: PMC7372348
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

ACS Nano. 2012 Mar 27;6(3):2798-803
pubmed: 22369466
Nano Lett. 2009 Jan;9(1):91-6
pubmed: 19072096
Rep Prog Phys. 2014 Sep;77(9):094001
pubmed: 25147025
Phys Rev A. 1994 Dec;50(6):5242-5255
pubmed: 9911526
Nat Nanotechnol. 2007 Oct;2(10):622-5
pubmed: 18654386
J Phys Condens Matter. 2012 Jul 11;24(27):273201
pubmed: 22713734
Phys Rev Lett. 2007 Feb 9;98(6):066803
pubmed: 17358967
Chemphyschem. 2009 Sep 14;10(13):2226-9
pubmed: 19603447
Phys Rev Lett. 2002 Aug 12;89(7):075505
pubmed: 12190529
Phys Rev A Gen Phys. 1989 Mar 1;39(5):2277-2289
pubmed: 9901493
J Phys Condens Matter. 2014 Oct 1;26(39):395303
pubmed: 25204376
J Am Chem Soc. 2008 Feb 27;130(8):2686-91
pubmed: 18251484
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031115
pubmed: 17930207

Auteurs

Devashish Pandey (D)

Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Edifici Q, 08193 Bellaterra, Spain.

Xavier Oriols (X)

Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Edifici Q, 08193 Bellaterra, Spain.

Guillermo Albareda (G)

Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.

Classifications MeSH