Lysines in the lyase active site of DNA polymerase β destabilize nonspecific DNA binding, facilitating searching and DNA gap recognition.

DNA binding protein DNA binding proteins DNA damage DNA polymerase DNA repair DNA–protein interaction base excision repair (BER) facilitated diffusion nonspecific DNA binding processive search

Journal

The Journal of biological chemistry
ISSN: 1083-351X
Titre abrégé: J Biol Chem
Pays: United States
ID NLM: 2985121R

Informations de publication

Date de publication:
21 08 2020
Historique:
received: 23 03 2020
revised: 07 07 2020
pubmed: 11 7 2020
medline: 20 1 2021
entrez: 11 7 2020
Statut: ppublish

Résumé

DNA polymerase (pol) β catalyzes two reactions at DNA gaps generated during base excision repair, gap-filling DNA synthesis and lyase-dependent 5´-end deoxyribose phosphate removal. The lyase domain of pol β has been proposed to function in DNA gap recognition and to facilitate DNA scanning during substrate search. However, the mechanisms and molecular interactions used by pol β for substrate search and recognition are not clear. To provide insight into this process, a comparison was made of the DNA binding affinities of WT pol β, pol λ, and pol μ, and several variants of pol β, for 1-nt-gap-containing and undamaged DNA. Surprisingly, this analysis revealed that mutation of three lysine residues in the lyase active site of pol β, 35, 68, and 72, to alanine (pol β KΔ3A) increased the binding affinity for nonspecific DNA ∼11-fold compared with that of the WT. WT pol μ, lacking homologous lysines, displayed nonspecific DNA binding behavior similar to that of pol β KΔ3A, in line with previous data demonstrating both enzymes were deficient in processive searching. In fluorescent microscopy experiments using mouse fibroblasts deficient in PARP-1, the ability of pol β KΔ3A to localize to sites of laser-induced DNA damage was strongly decreased compared with that of WT pol β. These data suggest that the three lysines in the lyase active site destabilize pol β when bound to DNA nonspecifically, promoting DNA scanning and providing binding specificity for gapped DNA.

Identifiants

pubmed: 32647014
pii: S0021-9258(17)50077-0
doi: 10.1074/jbc.RA120.013547
pmc: PMC7443498
pii:
doi:

Substances chimiques

DNA 9007-49-2
DNA Polymerase beta EC 2.7.7.7
POLB protein, human EC 2.7.7.7

Banques de données

PDB
['3isb']

Types de publication

Journal Article Research Support, N.I.H., Intramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

12181-12187

Subventions

Organisme : Intramural NIH HHS
ID : Z01 ES050158
Pays : United States
Organisme : Intramural NIH HHS
ID : Z01 ES050159
Pays : United States

Déclaration de conflit d'intérêts

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Références

DNA Repair (Amst). 2013 Sep;12(9):774-85
pubmed: 23871146
DNA Repair (Amst). 2018 Nov;71:101-107
pubmed: 30181039
J Biol Chem. 2010 Dec 24;285(52):40479-88
pubmed: 20952393
Biochemistry. 2008 Nov 4;47(44):11434-45
pubmed: 18839966
Enzymes. 2019;45:1-26
pubmed: 31627875
Nat Struct Biol. 2000 Mar;7(3):176-8
pubmed: 10700268
J Biol Chem. 2001 Sep 14;276(37):34659-63
pubmed: 11457865
Biochemistry. 2000 Jun 27;39(25):7559-69
pubmed: 10858306
Nucleic Acids Res. 2004 Jun 03;32(10):3040-52
pubmed: 15178741
J Biol Chem. 1998 May 1;273(18):11121-6
pubmed: 9556598
Biochemistry. 2014 May 6;53(17):2768-80
pubmed: 24717170
DNA Repair (Amst). 2015 Feb;26:23-9
pubmed: 25541391
J Mol Biol. 2011 Mar 18;407(1):149-70
pubmed: 21262234
Science. 1995 Aug 4;269(5224):699-702
pubmed: 7624801
Annu Rev Biochem. 2019 Jun 20;88:137-162
pubmed: 31220977
Nature. 2000 Jun 15;405(6788):807-10
pubmed: 10866204
Nucleic Acids Res. 2017 Apr 20;45(7):3822-3832
pubmed: 28119421
Free Radic Biol Med. 2017 Jun;107:292-300
pubmed: 28179111
J Biol Chem. 2002 Jun 7;277(23):20316-27
pubmed: 11912205
Nucleic Acids Res. 2017 Mar 17;45(5):2546-2557
pubmed: 27965414
Biochemistry. 1981 Nov 24;20(24):6929-48
pubmed: 7317363
Genes Dev. 2013 Aug 15;27(16):1752-68
pubmed: 23964092
Nucleic Acids Res. 2012 Apr;40(7):2974-83
pubmed: 22169953
Methods Enzymol. 1995;262:98-107
pubmed: 8594388
Cold Spring Harb Perspect Biol. 2013 Apr 01;5(4):a012583
pubmed: 23545420
Nucleic Acids Res. 2015 Aug 18;43(14):6934-44
pubmed: 26130715
J Biol Chem. 2017 Oct 20;292(42):17473-17481
pubmed: 28893909
J Biol Chem. 2018 Sep 28;293(39):15084-15094
pubmed: 30068550
J Biol Chem. 1978 Sep 25;253(18):6551-60
pubmed: 681366

Auteurs

Michael J Howard (MJ)

Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA.

Julie K Horton (JK)

Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA.

Ming-Lang Zhao (ML)

Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA.

Samuel H Wilson (SH)

Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA. Electronic address: wilson5@niehs.nih.gov.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH