In vivo characterization of target cells for acute elephant endotheliotropic herpesvirus (EEHV) infection in Asian elephants (Elephas maximus).
Animals
Antigens, Viral
/ analysis
Bone Marrow Cells
/ virology
DNA-Directed DNA Polymerase
/ analysis
Digestive System
/ virology
Elephants
/ virology
Endothelial Cells
/ virology
Female
Heart
/ virology
Hemorrhagic Disorders
/ veterinary
Herpesviridae
/ immunology
Herpesviridae Infections
/ veterinary
Lymph Nodes
/ virology
Male
Models, Molecular
Monocytes
/ virology
Myocytes, Smooth Muscle
/ virology
Nervous System
/ virology
Organ Specificity
Protein Conformation
Recombinant Proteins
/ chemistry
Salivary Glands
/ virology
Viral Proteins
/ analysis
Viral Tropism
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
09 07 2020
09 07 2020
Historique:
received:
20
03
2020
accepted:
24
06
2020
entrez:
11
7
2020
pubmed:
11
7
2020
medline:
1
1
2021
Statut:
epublish
Résumé
Elephant endotheliotropic herpesvirus-hemorrhagic disease (EEHV-HD) is a dangerous viral infectious disease in young Asian elephants. Despite hypotheses underlying pathogenesis of the disease, it is unclear which cell types the virus targets during acute or persistent infections. This study investigated the tissues and target cells permissive for EEHV infection and replication in vivo. Rabbit polyclonal antibodies against the non-structural proteins of EEHV, DNA polymerase (EEHV DNAPol), were generated and validated. These were used to examine EEHV infection and replication in various tissues of acute EEHV-HD cases and compared to an EEHV-negative control. The results indicated that viral antigens were distributed throughout the epithelia of the alimentary tract and salivary glands, endothelia and smooth muscle cells, and monocytic lineage cells of the EEHV-infected elephants. Moreover, EEHV DNAPol proteins were also found in the bone marrow cells of the EEHV1A-HD and EEHV1A/4-HD cases. This study demonstrated for the first time the target cells that favor in vivo EEHV replication during acute infection, providing a promising foundation for investigating EEHV propagation in vitro.
Identifiants
pubmed: 32647124
doi: 10.1038/s41598-020-68413-4
pii: 10.1038/s41598-020-68413-4
pmc: PMC7347588
doi:
Substances chimiques
Antigens, Viral
0
Recombinant Proteins
0
Viral Proteins
0
DNA-Directed DNA Polymerase
EC 2.7.7.7
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
11402Références
Long, S. Y., Latimer, E. M. & Hayward, G. S. Review of elephant endotheliotropic herpesviruses and acute hemorrhagic disease. ILAR J. 56, 283–296 (2016).
doi: 10.1093/ilar/ilv041
Wilkie, G. S. et al. First fatality associated with elephant endotheliotropic herpesvirus 5 in an Asian elephant: Pathological findings and complete viral genome sequence. Sci. Rep. 4, 6299. https://doi.org/10.1038/srep06299 (2014).
doi: 10.1038/srep06299
pubmed: 25199796
pmcid: 5385831
Richman, L. K. et al. Novel endotheliotropic herpesviruses fatal for Asian and African elephants. Science 283, 1171–1176 (1999).
doi: 10.1126/science.283.5405.1171
Dastjerdi, A., Seilern-Moy, K., Darpel, K., Steinbach, F. & Molenaar, F. Surviving and fatal Elephant Endotheliotropic Herpesvirus-1A infections in juvenile Asian elephants—Lessons learned and recommendations on anti-herpesviral therapy. BMC Vet. Res. 12, 178. https://doi.org/10.1186/s12917-016-0806-5 (2016).
doi: 10.1186/s12917-016-0806-5
pubmed: 27567895
pmcid: 5002104
Boonprasert, K. et al. Survival analysis of confirmed elephant endotheliotropic herpes virus cases in Thailand from 2006–2018. PLoS ONE 14, e0219288. https://doi.org/10.1371/journal.pone.0219288PONE-D-18-33945 (2019).
doi: 10.1371/journal.pone.0219288PONE-D-18-33945
pubmed: 31276571
pmcid: 6611605
Richman, L. K. et al. Elephant endotheliotropic herpesviruses EEHV1A, EEHV1B, and EEHV2 from cases of hemorrhagic disease are highly diverged from other mammalian herpesviruses and may form a new subfamily. J. Virol. 88, 13523–13546 (2014).
doi: 10.1128/JVI.01673-14
Ling, P. D. et al. Complete genome sequence of elephant endotheliotropic herpesvirus 4, the first example of a gc-rich branch proboscivirus. mSphere https://doi.org/10.1128/mSphere.00081-15e00081-15 (2016).
doi: 10.1128/mSphere.00081-15e00081-15
pubmed: 27340696
pmcid: 4911796
Ling, P. D. et al. Complete genome sequence of elephant endotheliotropic herpesvirus 1A. Genome Announc. 1, e0010613. https://doi.org/10.1128/genomeA.00106-13 (2013).
doi: 10.1128/genomeA.00106-13
pubmed: 23580705
Wilkie, G. S. et al. Complete genome sequences of elephant endotheliotropic herpesviruses 1A and 1B determined directly from fatal cases. J. Virol. 87, 6700–6712 (2013).
doi: 10.1128/JVI.00655-13
Knipe, D., Samuel, C. & Palese, P. Virus–host cell interactions. In Fields Virology (eds. Knipe, D.M. & Howley, P.M.) 133–170 (Lippincott Williums&Wilkins, Philadelphia, 2001).
Mocarski, E. & Courcelle, C. Cytomegaloviruses and their replication. In Fields virology (eds. Knipe, D.M. & Howley, P.M.) 2629–2674 (Lippincott Williams&Wilkins, Philadelphia, 2001).
Sinzger, C. et al. Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J. Gen. Virol 76(Pt 4), 741–750 (1995).
doi: 10.1099/0022-1317-76-4-741
Sinzger, C. & Jahn, G. Human cytomegalovirus cell tropism and pathogenesis. Intervirology 39, 302–319 (1996).
doi: 10.1159/000150502
Scrivano, L., Sinzger, C., Nitschko, H., Koszinowski, U. H. & Adler, B. HCMV spread and cell tropism are determined by distinct virus populations. PLoS Pathog. 7, e1001256. https://doi.org/10.1371/journal.ppat.1001256 (2011).
doi: 10.1371/journal.ppat.1001256
pubmed: 21249233
pmcid: 3020925
Plachter, B., Sinzger, C. & Jahn, G. Cell types involved in replication and distribution of human cytomegalovirus. Adv. Virus Res. 46, 195–261 (1996).
doi: 10.1016/S0065-3527(08)60073-1
Sinzger, C., Plachter, B., Grefte, A., The, T. H. & Jahn, G. Tissue macrophages are infected by human cytomegalovirus in vivo. J. Infect. Dis. 173, 240–245 (1996).
doi: 10.1093/infdis/173.1.240
Wang, X., Huong, S. M., Chiu, M. L., Raab-Traub, N. & Huang, E. S. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424, 456–461 (2003).
doi: 10.1038/nature01818
Soroceanu, L., Akhavan, A. & Cobbs, C. S. Platelet-derived growth factor-alpha receptor activation is required for human cytomegalovirus infection. Nature 455, 391–395 (2008).
doi: 10.1038/nature07209
Feire, A. L., Koss, H. & Compton, T. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc. Natl. Acad. Sci. USA 101, 15470–15475 (2004).
doi: 10.1073/pnas.0406821101
Youn, S., Ambrose, R. L., Mackenzie, J. M. & Diamond, M. S. Non-structural protein-1 is required for West Nile virus replication complex formation and viral RNA synthesis. Virol. J. 10, 339 (2013).
doi: 10.1186/1743-422X-10-339
Wang, F. X. et al. Role of non-structural protein 2 in the regulation of the replication of the porcine reproductive and respiratory syndrome virus in MARC-145 cells: Effect of gene silencing and over expression. Vet. Microbiol. 161, 58–65 (2012).
doi: 10.1016/j.vetmic.2012.07.011
Kochagul, V. et al. Production of antibody against elephant endotheliotropic herpesvirus (EEHV) unveils tissue tropisms and routes of viral transmission in EEHV-infected Asian elephants. Sci. Rep. 8, 4675. https://doi.org/10.1038/s41598-018-22968-5 (2018).
doi: 10.1038/s41598-018-22968-5
pubmed: 29549315
pmcid: 5856810
Srivorakul, S. et al. Possible roles of monocytes/macrophages in response to elephant endotheliotropic herpesvirus (EEHV) infections in Asian elephants (Elephas maximus). PLoS ONE 14, e0222158. https://doi.org/10.1371/journal.pone.0222158 (2019).
doi: 10.1371/journal.pone.0222158
pubmed: 31491031
pmcid: 6730851
Richman, L. K. et al. Clinical and pathological findings of a newly recognized disease of elephants caused by endotheliotropic herpesviruses. J. Wildl. Dis. 36, 1–12 (2000).
doi: 10.7589/0090-3558-36.1.1
Seilern-Moy, K., Darpel, K., Steinbach, F. & Dastjerdi, A. Distribution and load of elephant endotheliotropic herpesviruses in tissues from associated fatalities of Asian elephants. Virus Res. 220, 91–96 (2016).
doi: 10.1016/j.virusres.2016.04.012
Kochakul, V. et al. Development of in situ hybridization for detection of elephant endotheliotropic herpesvirus in Asian elephants. J. Vet. Diagn. Investig. 30, 628–632 (2018).
doi: 10.1177/1040638718773810
Jarvis, M. A. & Nelson, J. A. Human cytomegalovirus tropism for endothelial cells: Not all endothelial cells are created equal. J. Virol. 81, 2095–2101 (2007).
doi: 10.1128/JVI.01422-06
Ruoslahti, E. & Rajotte, D. An address system in the vasculature of normal tissues and tumors. Annu. Rev. Immunol. 18, 813–827 (2000).
doi: 10.1146/annurev.immunol.18.1.813
Chi, J. T. et al. Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. USA 100, 10623–10628 (2003).
doi: 10.1073/pnas.1434429100
Koffron, A. J. et al. Cellular localization of latent murine cytomegalovirus. J. Virol. 72, 95–103 (1998).
doi: 10.1128/JVI.72.1.95-103.1998
Munn, L. L. & Dupin, M. M. Blood cell interactions and segregation in flow. Ann. Biomed. Eng. 36, 534–544 (2008).
doi: 10.1007/s10439-007-9429-0
Stanton, J. J. et al. Kinetics of viral loads and genotypic analysis of elephant endotheliotropic herpesvirus-1 infection in captive Asian elephants (Elephas maximus). J. Zool. Wildl. Med. 44, 42–54 (2013).
doi: 10.1638/1042-7260-44.1.42
Stanton, J. J. et al. Detection of pathogenic elephant endotheliotropic herpesvirus in routine trunk washes from healthy adult Asian elephants (Elephas maximus) by use of a real-time quantitative polymerase chain reaction assay. Am. J. Vet. Res. 71, 925–933 (2010).
doi: 10.2460/ajvr.71.8.925
Kavanova, L. et al. Monocyte derived macrophages as an appropriate model for porcine cytomegalovirus immunobiology studies. Vet. Immunol. Immunopathol. 197, 58–62 (2018).
doi: 10.1016/j.vetimm.2018.01.008
Poole, E. et al. Alveolar macrophages isolated directly from human cytomegalovirus (HCMV)-seropositive individuals are sites of HCMV reactivation in vivo. J. Infect. Dis. 211, 1936–1942 (2015).
doi: 10.1093/infdis/jiu837
Menard, C. et al. Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J. Virol. 77, 5557–5570 (2003).
doi: 10.1128/JVI.77.10.5557-5570.2003
Yang, J. et al. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 12, 7–8 (2015).
doi: 10.1038/nmeth.3213
Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).
doi: 10.1038/nprot.2010.5
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 9, 40. https://doi.org/10.1186/1471-2105-9-40 (2008).
doi: 10.1186/1471-2105-9-40
Liu, B. et al. Apoptosis and pro-inflammatory cytokine response of mast cells induced by influenza A viruses. PLoS ONE 9, e100109. https://doi.org/10.1371/journal.pone.0100109 (2014).
doi: 10.1371/journal.pone.0100109
pubmed: 24923273
pmcid: 4055757
Pringproa, K. et al. Histopathological and immunohistochemical characterization of spontaneous uterine leiomyomas in two captive asian elephants. Thai J. Vet. Med. 45, 289–294 (2015).
Pringproa, K., Kumnok, J., Ulrich, R., Baumgartner, W. & Wewetzer, K. In vitro characterization of a murine oligodendrocyte precursor cell line (BO-1) following spontaneous immortalization. Int. J. Dev. Neurosci. 26, 283–291 (2008).
doi: 10.1016/j.ijdevneu.2008.01.008