Effects of pterostigma structure on vibrational characteristics during flight of Asian ladybird Harmonia axyridis (Coleoptera: Coccinellidae).


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
09 07 2020
Historique:
received: 14 02 2020
accepted: 23 06 2020
entrez: 11 7 2020
pubmed: 11 7 2020
medline: 22 12 2020
Statut: epublish

Résumé

The hind wings of beetles are deployable and play an essential role in flight. In the Asian ladybird Harmonia axyridis (Coleoptera: Coccinellidae), the pterostigma (pst) is found in the middle of the hind wing instead of at the tip of the hind wing. This paper investigates the effect of the pst on the vibrational characteristics during the flight of H. axyridis. Based on cross sections of the pst and veins as well as the morphology and nanomechanical properties of the hind wing, including the wing membrane and veins, three three-dimensional coupling models, Models I-III, of hind wings with/without pst structures and veins with varying or uniform reduced moduli are established. Modal analysis results for these three models show that the vibrational characteristics and deformation tendencies change the flight performance of the hind wing models with pst structures compared with that of the other models. The results in this paper reveal that the pst structure has an important influence on vibrational characteristics and deformation tendencies and, hence, on flight performance; the relationships between the body mass and the area of the hind wing, which have significant implications for the design of biomimetic deployable wing structures for micro air vehicles (MAVs), are also analyzed.

Identifiants

pubmed: 32647317
doi: 10.1038/s41598-020-68384-6
pii: 10.1038/s41598-020-68384-6
pmc: PMC7347916
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

11371

Références

Nguyen, Q.V., Chan, W. L. & Debiasi, M. An insect-inspired flapping wing micro air vehicle with double wing clap-fling effects and capability of sustained hovering. In Bioinspiration, Biomimetics, and Bioreplication 2015, vol 9429 (eds. Lakhtakia, A., Knez, M. & Martín-Palma, R. J.) 94290U (2015).
Liu, Z. et al. Electrostatic flapping-wing actuator with improved lift force by the pivot-spar bracket design. Sens. Actuators A Phys. 280, 295–302 (2018).
doi: 10.1016/j.sna.2018.07.054
Hou, D., Yin, Y., Zhong, Z. & Zhao, H. A new torsion control mechanism induced by blood circulation in dragonfly wings. Bioinspir. Biomim. 10, 016020 (2015).
doi: 10.1088/1748-3190/10/1/016020
Rajabi, H., Ghoroubi, N., Malaki, M., Darvizeh, A. & Gorb, S. N. Basal complex and basal venation of odonata wings: Structural diversity and potential role in the wing deformation. PLoS ONE 11, e0160610 (2016).
doi: 10.1371/journal.pone.0160610
Jitsukawa, T., Adachi, H., Abe, T., Yamakawa, H. & Umezu, S. Bio-inspired wing-folding mechanism of micro air vehicle (MAV). Artif. Life Robot. 22, 203–208 (2017).
doi: 10.1007/s10015-016-0339-9
Sun, J., Song, Z., Pan, C. & Liu, Z. Analysis of light-mass and high-strength veins of hind wing from Asian ladybird beetle. In 2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) 142–145 (IEEE, 2018). https://doi.org/10.1109/3M-NANO.2018.8552182 .
Sun, J., Liu, C., Bhushan, B., Wu, W. & Tong, J. Effect of microtrichia on the interlocking mechanism in the Asian ladybeetle, Harmonia axyridis (Coleoptera: Coccinellidae). Beilstein J. Nanotechnol. 9, 812–823 (2018).
doi: 10.3762/bjnano.9.75
Lee, Y. J., Lua, K. B., Lim, T. T. & Yeo, K. S. A quasi-steady aerodynamic model for flapping flight with improved adaptability. Bioinspir. Biomim. 11, 036005 (2016).
doi: 10.1088/1748-3190/11/3/036005
Hedrick, T. L., Combes, S. A. & Miller, L. A. Recent developments in the study of insect flight. Can. J. Zool. 93, 925–943 (2015).
doi: 10.1139/cjz-2013-0196
Betts, C. R. Functioning of the wings and axillary sclerites of Heteroptera during flight. J. Zool. 1, 283–301 (1986).
doi: 10.1111/j.1096-3642.1986.tb00640.x
Gerdes, J. W., Gupta, S. K. & Wilkerson, S. A. A review of bird-inspired flapping wing miniature air vehicle designs. In Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B, vol 4, 57–67 (ASME, 2010).
Kesel, A. B., Philippi, U. & Nachtigall, W. Biomechanical aspects of the insect wing: An analysis using the finite element method. Comput. Biol. Med. 28, 423–437 (1998).
doi: 10.1016/S0010-4825(98)00018-3
Ennos, A. R. Inertial and aerodynamic torques on the wings of Diptera in flight. J. Exp. Biol. 142, 87–95 (1989).
Kumar, D., Kumar, V. S., Goyal, T., Mohite, P. M. & Kamle, S. Modal analysis of hummingbird inspired MAV flapping wings. Appl. Mech. Mater. 772, 435–440 (2015).
doi: 10.4028/www.scientific.net/AMM.772.435
Mueller, D., Bruck, H. A. & Gupta, S. K. Measurement of thrust and lift forces associated with drag of compliant flapping wing for micro air vehicles using a new test stand design. Exp. Mech. 50, 725–735 (2010).
doi: 10.1007/s11340-009-9270-5
Hugues, B. A review of biomechanic and aerodynamic considerations of the avian thoracic limb. J. Avian Med. Surg. 23, 173–185 (2009).
doi: 10.1647/2007-023.1
Oertli, J. J. Relationship of wing beat frequency and temperature during take-off flight in temperate-zone beetles. J. Exp. Biol. 145, 321–338 (1989).
Byrne, D., Buchmann, S. L. & Spangler, H. G. Relationship between wing loading, wingbeat frequency and body mass in homopterous insects. J. Exp. Biol. 135, 9–23 (1988).
Shyy, W., Kang, C., Chirarattananon, P., Ravi, S. & Liu, H. Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proc. R. Soc. Math. Phys. Eng. Sci. 472, 20150712 (2016).
doi: 10.1098/rspa.2015.0712
Rajabi, H. et al. A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings. Appl. Phys. A 122, 19 (2016).
doi: 10.1007/s00339-015-9557-6
Bergmann, P., Richter, S., Glöckner, N. & Betz, O. Morphology of hindwing veins in the shield bug Graphosoma italicum (Heteroptera: Pentatomidae). Arthropod Struct. Dev. 47, 375–390 (2018).
doi: 10.1016/j.asd.2018.04.004
Schieber, G. et al. Hindwings of insects as concept generator for hingeless foldable shading systems. Bioinspir. Biomim. 13, 1–16 (2017).
doi: 10.1088/1748-3190/aa979c
Meyers, M. A., Chen, P. Y., Lin, A. Y. M. & Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008).
doi: 10.1016/j.pmatsci.2007.05.002
Kukalová-Peck, J. & Lawrence, J. F. Evolution of the hind wing in Coleoptera. Can. Entomol. 125, 181–258 (1993).
doi: 10.4039/Ent125181-2
Ȧke Norberg, R. The pterostigma of insect wings an inertial regulator of wing pitch. J. Comp. Physiol. 81, 9–22 (1972).
doi: 10.1007/BF00693547
Jongerius, S. R. & Lentink, D. Structural analysis of a dragonfly wing. Exp. Mech. 50, 1323–1334 (2010).
doi: 10.1007/s11340-010-9411-x
Hou, D., Zhong, Z., Yin, Y., Pan, Y. & Zhao, H. The role of soft vein joints in dragonfly flight. J. Bionic Eng. 14, 738–745 (2017).
doi: 10.1016/S1672-6529(16)60439-0
Zhao, H., Yin, Y. & Zhong, Z. Arnold circulation and multi-optimal dynamic controlling mechanisms in dragonfly wings. Acta Mech. Solida Sin. 26, 237–244 (2013).
doi: 10.1016/S0894-9166(13)60022-1
Ennos, A. R. The inertial cause of wing rotation in Diptera. J. Exp. Biol. 140, 161–169 (1988).
Fedorenko, D. N. Evolution of the beetle hind wing, with special reference to folding (Insecta, Coleoptera). (Geo Milev Str. 13a, Sofia 1111, Bulgaria, 2009).
Brackenbury, J. H. Wing folding and free-flight kinematics in Coleoptera (Insecta): A comparative study. J. Zool. 232, 253–283 (1994).
doi: 10.1111/j.1469-7998.1994.tb01572.x
Li, Z., Shen, W., Tong, G., Tian, J. & Vu-Quoc, L. On the vein-stiffening membrane structure of a dragonfly hind wing. J. Zhejiang Univ. A 10, 72–81 (2009).
doi: 10.1631/jzus.A0820211
Mamat-Noorhidayah, Y., Numata, K. & Norma-Rashid, Y. Morphological and mechanical properties of flexible resilin joints on damselfly wings (Rhinocypha spp.). PLoS ONE 13, e0193147 (2018).
doi: 10.1371/journal.pone.0193147
Rajabi, H., Shafiei, A., Darvizeh, A. & Gorb, S. N. Resilin microjoints: A smart design strategy to avoid failure in dragonfly wings. Sci. Rep. 6, 39039 (2016).
doi: 10.1038/srep39039
Gorb, S. N. Serial elastic elements in the damselfly wing: Mobile vein joints contain resilin. Naturwissenschaften 86, 552–555 (1999).
doi: 10.1007/s001140050674
Rajabi, H., Ghoroubi, N., Darvizeh, A., Appel, E. & Gorb, S. N. Effects of multiple vein microjoints on the mechanical behaviour of dragonfly wings: Numerical modelling. R. Soc. Open Sci. 3, 150610 (2016).
doi: 10.1098/rsos.150610
Ha, N. S., Jin, T. L., Goo, N. S. & Park, H. C. Anisotropy and non-homogeneity of an Allomyrina Dichotoma beetle hind wing membrane. Bioinspir. Biomim. 6, 046003 (2011).
doi: 10.1088/1748-3182/6/4/046003
Herbert, R. C., Young, P. G., Smith, C. W., Wootton, R. J. & Evans, K. E. The hind wing of the desert locust (Schistocerca Gregaria Forskål) III. A finite element analysis of a deployable structure. J. Exp. Biol. 203, 2945–2955 (2000).
pubmed: 10976031
Hou, D., Yin, Y., Zhao, H. & Zhong, Z. Effects of blood in veins of dragonfly wing on the vibration characteristics. Comput. Biol. Med. 58, 14–19 (2015).
doi: 10.1016/j.compbiomed.2014.12.018
Ha, N. S., Truong, Q. T., Goo, N. S. & Park, H. C. Biomechanical properties of insect wings: The stress stiffening effects on the asymmetric bending of the Allomyrina dichotomabeetle’s hind wing. PLoS ONE 8, e80689 (2013).
doi: 10.1371/journal.pone.0080689
Song, Z., Yan, Y., Wu, W., Tong, J. & Sun, J. The roles of wrinkle structures in the veins of Asian ladybird and bioinspiration. bioRxiv. https://doi.org/10.1101/2020.01.02.893388 (2020).
doi: 10.1101/2020.01.02.893388 pubmed: 32577647 pmcid: 7302201
Saha, R. & Nix, W. D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23–38 (2002).
doi: 10.1016/S1359-6454(01)00328-7
Shevtsova, E., Hansson, C., Janzen, D. H. & Kjaerandsen, J. Stable structural color patterns displayed on transparent insect wings. Proc. Natl. Acad. Sci. 108, 668–673 (2011).
doi: 10.1073/pnas.1017393108
Song, Z., Yan, Y., Tong, J. & Sun, J. Asian ladybird folding and unfolding of hind wing: biomechanical properties of resilin in affecting the tensile strength of the folding area. J. Mater. Sci. 55, 4524–4537 (2020).
doi: 10.1007/s10853-019-04326-6
Song, Z., Tong, J., Yan, Y., Wu, W. & Sun, J. Effects of microfluid in the veins of the deployable hindwings of the Asian ladybeetle on flight performance. Comput. Biol. Med. 121, 103817 (2020).
doi: 10.1016/j.compbiomed.2020.103817

Auteurs

Z L Song (ZL)

Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, People's Republic of China.

J Tong (J)

Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, People's Republic of China.

Y W Yan (YW)

Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, People's Republic of China.

J Y Sun (JY)

Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, People's Republic of China. sjy@jlu.edu.cn.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH