A fast and simple SPE-LC-MS/MS procedure for extraction and quantitative analysis of 1,2,4-triazole, N,N-dimethylsulfamide, and other small polar organic compounds in groundwater.
ENVI-Carb
Hypercarb
LC-MS/MS
PMOCs
SPE
Solid phase extraction
Journal
Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327
Informations de publication
Date de publication:
Sep 2020
Sep 2020
Historique:
received:
07
05
2020
accepted:
22
06
2020
revised:
12
06
2020
pubmed:
11
7
2020
medline:
11
7
2020
entrez:
11
7
2020
Statut:
ppublish
Résumé
Small polar organic pollutants have been discovered to be great threats to the groundwater' as they often are highly mobile and persistent in the environment. 1,2,4-Triazole and N,N-dimethylsulfamide, two well-known examples of small polar compounds, are frequent pollutants of upper groundwater. Both are degradation products of several fungicides commonly or previously used in agriculture' but also in wood-preserving paints. A common trait in the analysis of these small polar compounds is the lack of sufficient pre-concentration methods to lower the limit of detection and enable quantitative analysis at nano-scale concentrations. To date, they are analyzed only by direct injection in HPLC-MS/MS, with detection limits just below the European threshold value for pesticides in groundwater of 0.1 μg/L. Based on a comprehensive method development, a solid phase extraction method was developed. As known LC methods for analysis of 1,2,4-triazole are based on Thermo Fisher's Hypercarb column, emphasis was placed on testing various carbon-based materials. The final, thoroughly validated extraction protocol is based on Supelco's ENVI-Carb Plus cartridges. With extraction recoveries close to 100% for 1,2,4-triazole and N,N-dimethylsulfamide and quantification limits of around 0.003 μg/L, the method enables extraction and quantification of polar pollutants at nano-scale concentration from groundwater samples. In addition, the method is very promising to be used for other small polar pollutants. Graphical abstract.
Identifiants
pubmed: 32648104
doi: 10.1007/s00216-020-02788-1
pii: 10.1007/s00216-020-02788-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5683-5693Subventions
Organisme : Miljøstyrelsen
ID : TriaFung (project no. MST-667-00200)
Références
Reemtsma T, Berger U, Arp HPH, Gallard H, Knepper TP, Neumann M, et al. Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ Sci Technol. 2016;50(19):10308–15. https://doi.org/10.1021/acs.est.6b03338 .
doi: 10.1021/acs.est.6b03338
pubmed: 27571393
Schulze S, Sättler D, Neumann M, Arp HPH, Reemtsma T, Berger U. Using REACH registration data to rank the environmental emission potential of persistent and mobile organic chemicals. Sci Total Environ. 2018;625:1122–8. https://doi.org/10.1016/j.scitotenv.2017.12.305 .
doi: 10.1016/j.scitotenv.2017.12.305
pubmed: 29996409
Schulze S, Zahn D, Montes R, Rodil R, Quintana JB, Knepper TP, et al. Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Res. 2019;153:80–90. https://doi.org/10.1016/j.watres.2019.01.008 .
doi: 10.1016/j.watres.2019.01.008
pubmed: 30703676
GEUS (2019) Occurence of N,N-dimethylsulfamide (DMS) and 1,2,4-triazole in Danish drinking water wells (Forekomst af N,N-dimethylsulfamid (DMS) og 1,2,4-triazol i de almene vandværkers boringskontrol) GEUS-NOTAT nr.: 05-VA-19-01. Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Kowal S, Balsaa P, Werres F, Schmidt TCJA, Chemistry B (2009) Determination of the polar pesticide degradation product N,N-dimethylsulfamide in aqueous matrices by UPLC–MS/MS. 395 (6):1787. doi: https://doi.org/10.1007/s00216-009-2861-2 .
Hippelein M, Matthiessen A, Kolychalow O, Ostendorp G. Untersuchung von Pflanzenschutzmitteln und Biozidprodukten in Trinkwasser-Kleinanlagen in Schleswig-Holstein (Analyses of pesticides in drinking water from small-scale water supplies in Schleswig-Holstein, Germany). Gesundheitswesen. 2012;74(12):829–33. https://doi.org/10.1055/s-0031-1301270 .
doi: 10.1055/s-0031-1301270
pubmed: 22322333
Jackson R, Ghosh D, Paterson G (2000) The soil degradation of the herbicide florasulam. 56 (12):1065-1072. doi: https://doi.org/10.1002/1526-4998(200012)56:12<1065::AID-PS252>3.0.CO;2-Y .
EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk assessment of the active substance tebuconazole. EFSA J. 2014;12(1):3485. https://doi.org/10.2903/j.efsa.2014.3485 .
doi: 10.2903/j.efsa.2014.3485
El Azhari N, Dermou E, Barnard RL, Storck V, Tourna M, Beguet J, et al. The dissipation and microbial ecotoxicity of tebuconazole and its transformation products in soil under standard laboratory and simulated winter conditions. Sci Total Environ. 2018;637-638:892–906. https://doi.org/10.1016/j.scitotenv.2018.05.088 .
doi: 10.1016/j.scitotenv.2018.05.088
pubmed: 29763870
Blondel A, Krings B, Ducat N, Pigeon O. Validation of an analytical method for 1,2,4-triazole in soil using liquid chromatography coupled to electrospray tandem mass spectrometry and monitoring of propiconazole degradation in a batch study. J Chromatogr A. 2018;1562:123–7. https://doi.org/10.1016/j.chroma.2018.05.056 .
doi: 10.1016/j.chroma.2018.05.056
pubmed: 29857918
Scheurer M, Brauch H-J, Schmidt CK, Sacher F. Occurrence and fate of nitrification and urease inhibitors in the aquatic environment. Environ Sci: Processes Impacts. 2016;18(8):999–1010. https://doi.org/10.1039/C6EM00014B .
doi: 10.1039/C6EM00014B
Barneze AS, Minet EP, Cerri CC, Misselbrook T. The effect of nitrification inhibitors on nitrous oxide emissions from cattle urine depositions to grassland under summer conditions in the UK. Chemosphere. 2015;119:122–9. https://doi.org/10.1016/j.chemosphere.2014.06.002 .
doi: 10.1016/j.chemosphere.2014.06.002
pubmed: 24973531
Imamura N, Murata M, Yao T, Oiwa R, Tanaka H, Omura S. Occurrence of 1,2,4-triazole ring in Actinomycetes. J Antibiot. 1985;38(8):1110–1. https://doi.org/10.7164/antibiotics.38.1110 .
doi: 10.7164/antibiotics.38.1110
pubmed: 4044411
Schmidt CK, Brauch H-J. N,N-Dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environ Sci Technol. 2008;42(17):6340–6. https://doi.org/10.1021/es7030467 .
doi: 10.1021/es7030467
pubmed: 18800499
Freitag T (2013) Analytical method 01364 for the determination of 1,2,4-triazole in soil by HPLC-MS/MS. BayerCropScience, Monheim am Rhein, Germany
Schermerhorn PG, Golden PE, Krynitsky AJ, Leimkuehler WM. Determination of 22 triazole compounds including parent fungicides and metabolites in apples, peaches, flour, and water by liquid chromatography/tandem mass spectrometry. J AOAC Int. 2005;88(5):1491–502.
doi: 10.1093/jaoac/88.5.1491
European Parliament and Council. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration (groundwater directive). Off J Eur Union. 2006;372:19–31.
Lee C, Schmidt C, Yoon J, von Gunten U. Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: kinetics and effect on NDMA formation potential. Environ Sci Technol. 2007;41(6):2056–63. https://doi.org/10.1021/es062484q .
doi: 10.1021/es062484q
pubmed: 17410805
Zahn D, Neuwald IJ, Knepper TP. Analysis of mobile chemicals in the aquatic environment—current capabilities, limitations and future perspectives. Anal Bioanal Chem. 2020. https://doi.org/10.1007/s00216-020-02520-z .
Köke N, Zahn D, Knepper TP, Frömel T. Multi-layer solid-phase extraction and evaporation—enrichment methods for polar organic chemicals from aqueous matrices. Anal Bioanal Chem. 2018;410(9):2403–11. https://doi.org/10.1007/s00216-018-0921-1 .
doi: 10.1007/s00216-018-0921-1
pubmed: 29435633
Huntscha S, Singer HP, McArdell CS, Frank CE, Hollender J. Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2012;1268:74–83. https://doi.org/10.1016/j.chroma.2012.10.032 .
doi: 10.1016/j.chroma.2012.10.032
pubmed: 23137864
Mechelke J, Longrée P, Singer H, Hollender J. Vacuum-assisted evaporative concentration combined with LC-HRMS/MS for ultra-trace-level screening of organic micropollutants in environmental water samples. Anal Bioanal Chem. 2019;411(12):2555–67. https://doi.org/10.1007/s00216-019-01696-3 .
doi: 10.1007/s00216-019-01696-3
pubmed: 30854597
pmcid: 6470124
Kiefer K, Müller A, Singer H, Hollender J. New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Res. 2019;165:114972. https://doi.org/10.1016/j.watres.2019.114972 .
doi: 10.1016/j.watres.2019.114972
pubmed: 31450217
Danish Pesticide Leaching Assessment Programme (PLAP) www.pesticidvarsling.dk (last accessed 11/02/2020).
Rosenbom AE, Karan S, Badawi N, Gudmundsson L, Hansen CH, Kazmierczak J, Nielsen CB, Plauborg F, Olsen P (2018) The Danish Pesticide Leaching Assessment Programme - monitoring results May 1999–June 2017. Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Anastassiades M, Kolberg DI, Eichhorn E, Benkenstein A, Wachtler A-K, Zechmann S, Mack D, Wildgrube C, Barth A, Sigalov I, Görlich S, Dörk D, Cerchia G (2019) Quick method for the analysis of numerous highly polar pesticides in foods of plant origin via LC-MS/MS involving simultaneous extraction with methanol (QuPPe-method) I. Food of plant origin (QuPPe-PO-method). Version 10. EU Reference Laboratory for pesticides requiring Single Residue Methods (EURL-SRM), Fellbach, Germany