An off-on electrochemiluminescence detection for microRNAs based on TiO
Biosensing Techniques
Dendrimers
/ chemistry
Electrochemical Techniques
/ methods
Gold
/ chemistry
Humans
Limit of Detection
Luminescent Measurements
/ methods
Metal Nanoparticles
/ chemistry
MicroRNAs
/ analysis
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Nanotubes
/ chemistry
Spectrophotometry, Ultraviolet
Titanium
/ chemistry
Au nanoparticles
Energy transfer
Enhanced electrochemiluminescence
TiO2 nanotubes
microRNA-21
Journal
Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327
Informations de publication
Date de publication:
Sep 2020
Sep 2020
Historique:
received:
01
05
2020
accepted:
01
07
2020
revised:
09
06
2020
pubmed:
11
7
2020
medline:
24
4
2021
entrez:
11
7
2020
Statut:
ppublish
Résumé
A sensitive electrochemiluminescence (ECL) assay for microRNAs (miRNAs) based on a semiconductor nanomaterial sensitized with noble-metal Au nanoparticles (NPs) is successfully developed. TiO
Identifiants
pubmed: 32648106
doi: 10.1007/s00216-020-02800-8
pii: 10.1007/s00216-020-02800-8
doi:
Substances chimiques
Dendrimers
0
MicroRNAs
0
PAMAM Starburst
0
titanium dioxide
15FIX9V2JP
Gold
7440-57-5
Titanium
D1JT611TNE
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5779-5787Références
Bai J, Zhou BX. Titanium dioxide nanomaterials for sensor applications. Chem Rev. 2014;114:10131–76.
doi: 10.1021/cr400625j
Grätzel M. Photoelectrochemical cells. Nature. 2001;414:338–44.
doi: 10.1038/35104607
Konstantinou IK, Albanis TA. TiO
doi: 10.1016/j.apcatb.2003.11.010
Ni M, Leung MKH, Leung DYC, Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO
doi: 10.1016/j.rser.2005.01.009
Mills A, Hunte SL. An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem. 1997;108:1–35.
doi: 10.1016/S1010-6030(97)00118-4
Deng SY, Ju HX. Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst. 2012;138:43–61.
doi: 10.1039/C2AN36122A
Tian CY, Xu JJ, Chen HY. A novel aptasensor for the detection of adenosine in cancer cells by electrochemiluminescence of nitrogen doped TiO
doi: 10.1039/c2cc34229d
Tian CY, Zhao WW, Wang J, Xu JJ, Chen HY. Amplified quenching of electrochemiluminescence from CdS sensitized TiO
doi: 10.1039/c2an35493d
Song YY, Zhuang QL, Li CY, Liu HF, Cao J, Gao ZD. CdS nanocrystals functionalized TiO
doi: 10.1016/j.elecom.2012.01.009
Dai PP, Yu T, Shi HW, Xu JJ, Chen HY. A general strategy for enhancing electrochemiluminescence of semiconductor nanocrystals by hydrogen peroxide and potassium persulfate as dual-coreactants. Anal Chem. 2015;87:12372–9.
doi: 10.1021/acs.analchem.5b03890
Dai P, Liu C, Xie C, Ke J, He Y, Wei L, et al. TiO
doi: 10.1007/s00216-019-02365-1
Jun Y, Park JH, Kang MG. The preparation of highly ordered TiO
doi: 10.1039/c2cc30733b
Huo KF, Gao B, Fu JJ, Zhao LZ, Chu PK. Fabrication, modification, and biomedical applications of anodized TiO
doi: 10.1039/C4RA01458H
Jen HP, Lin MH, Li LL, Wu HP, Huang WK, Cheng PJ, et al. High performance large-scale flexible dye-sensitized solar cells based on anodic TiO
doi: 10.1021/am402687j
Zhang Z, Wang P. Optimization of photoelectrochemical water splitting performance on hierarchical TiO
doi: 10.1039/c2ee03461a
Tian CY, Wang L, Luan F, Zhuang XM. An electrochemiluminescence sensor for the detection of prostate protein antigen based on the graphene quantum dots infilled TiO
doi: 10.1016/j.talanta.2018.08.050
Jie GF, Liu B, Pan HC, Zhu JJ, Chen HY. Cds nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Anal Chem. 2007;79:5574–81.
doi: 10.1021/ac062357c
Jie GF, Liu P, Zhang SS. Highly enhanced electrochemiluminescence of novel gold/silica/CdSe-CdS nanostructures for ultrasensitive immunoassay of protein tumor marker. Chem Commun. 2010;46:1323–5.
doi: 10.1039/b919186k
Wang CZ, Yifeng E, Fan LZ, Yang SH, Li YL. CdS-Ag nanocomposite arrays: enhanced electro-chemiluminescence but quenched photoluminescence. J Mater Chem. 2009;19:3841–6.
doi: 10.1039/b821213a
Li JX, Yang LX, Luo SL, Chen BB, Li J, Lin HL, et al. Polycyclic aromatic hydrocarbon detection by electrochemiluminescence generating Ag/TiO
doi: 10.1021/ac101392f
Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell. 2009;136:586–91.
doi: 10.1016/j.cell.2009.02.005
Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482:347–55.
doi: 10.1038/nature10888
de Planell-Saguer M, Rodicio MC. Analytical aspects of microRNA in diagnostics: a review. Anal Chim Acta. 2011;699:134–52.
doi: 10.1016/j.aca.2011.05.025
Li W, Ruan K. MicroRNA detection by microarray. Anal Bioanal Chem. 2009;394:1117–24.
doi: 10.1007/s00216-008-2570-2
Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nat Methods. 2004;1:47–53.
doi: 10.1038/nmeth704
Li J, Yao B, Huang H, Wang Z, Sun CH, Fan Y, et al. Real-time polymerase chain reaction microRNA detection based on enzymatic stem-loop probes ligation. Anal Chem. 2009;81:5446–51.
doi: 10.1021/ac900598d
Fiedler SD, Carletti MZ, Christenson LK. Quantitative RT-PCR methods for mature microRNA expression analysis. Methods Mol Biol. 2010;630:49–64.
doi: 10.1007/978-1-60761-629-0_4
Bertoncello P, Forster RJ. Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: recent advances and future perspectives. Biosens Bioelectron. 2009;24:3191–200.
doi: 10.1016/j.bios.2009.02.013
Bertoncello P, Ugo P. Recent advances in electrochemiluminescence with quantum dots and arrays of nanoelectrodes. Chemelectrochem. 2017;4:1663–76.
doi: 10.1002/celc.201700201
Zhao WW, Dong XY, Wang J, Kong FY, Xu JJ, Chen HY. Immunogold labeling-induced synergy effect for amplified photoelectrochemical immunoassay of prostate-specific antigen. Chem Commun. 2012;48:5253–5.
doi: 10.1039/c2cc17942c
Zhao WW, Ma ZY, Yan DY, Xu JJ, Chen HY. In situ enzymatic ascorbic acid production as electron donor for CdS quantum dots equipped TiO
doi: 10.1021/ac3028799
Ye H, Scott RWJ, Crooks RM. Synthesis, characterization, and surface immobilization of platinum and palladium nanoparticles encapsulated within amine-terminated poly(amidoamine) dendrimers. Langmuir. 2004;20:2915–20.
doi: 10.1021/la0361060
Zhang P, Li ZY, Wang HJ, Zhuo Y, Yuan R, Chai YQ. DNA nanomachine-based regenerated sensing platform: a novel electrochemiluminescence resonance energy transfer strategy for ultra-high sensitive detection of microRNA from cancer cells. Nanoscale. 2017;6:2310–6.
doi: 10.1039/C6NR08631D
Hao KH, He Y, Lu HT, Pu ST, Zhang YN, Dong HF, et al. High-sensitive surface plasmon resonance microRNA biosensor based on streptavidin functionalized gold nanorods-assisted signal amplification. Anal Chim Acta. 2017;954:114–20.
doi: 10.1016/j.aca.2016.12.006
Zhu Y, Qiu D, Yang G, Wang MQ, Zhang QJ, Wang P, et al. Selective and sensitive detection of miRNA-21 based on gold-nanorod functionalized polydiacetylene microtube waveguide. Biosens Bioelectron. 2016;85:198–204.
doi: 10.1016/j.bios.2016.05.019
Lu LY, Tu DT, Liu Y, Zhou SY, Zheng W, Chen XY. Ultrasensitive detection of cancer biomarker microRNA by amplification of fluorescence of lanthanide nanoprobes. Nano Res. 2018;1:264–73.
doi: 10.1007/s12274-017-1629-9