Recent advances of miRNAs in the development and clinical application of gastric cancer.
Journal
Chinese medical journal
ISSN: 2542-5641
Titre abrégé: Chin Med J (Engl)
Pays: China
ID NLM: 7513795
Informations de publication
Date de publication:
05 Aug 2020
05 Aug 2020
Historique:
pubmed:
11
7
2020
medline:
15
5
2021
entrez:
11
7
2020
Statut:
ppublish
Résumé
Gastric cancer (GC) is one of the most common malignant tumors. The mechanism of how GC develops is vague, and therapies are inefficient. The function of microRNAs (miRNAs) in tumorigenesis has attracted the attention from many scientists. During the development of GC, miRNAs function in the regulation of different phenotypes, such as proliferation, apoptosis, invasion and metastasis, drug sensitivity and resistance, and stem-cell-like properties. MiRNAs were evaluated for use in diagnostic and prognostic predictions and exhibited considerable accuracy. Although many problems exist for the application of therapy, current studies showed the antitumor effects of miRNAs. This paper reviews recent advances in miRNA mechanisms in the development of GC and the potential use of miRNAs in the diagnosis and treatment of GC.
Identifiants
pubmed: 32649523
doi: 10.1097/CM9.0000000000000921
pmc: PMC7469991
pii: 00029330-202008050-00011
doi:
Substances chimiques
Biomarkers, Tumor
0
MicroRNAs
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1856-1867Références
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68:394–424. doi: 10.3322/caac.21492.
doi: 10.3322/caac.21492
Soerjomataram I, Lortet-Tieulent J, Parkin DM, Ferlay J, Mathers C, Forman D, et al. Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet 2012; 380:1840–1850. doi: 10.1016/S0140-6736(12)60919-2.
doi: 10.1016/s0140-6736(12)60919-2
Link A, Kupcinskas J. MicroRNAs as non-invasive diagnostic biomarkers for gastric cancer: current insights and future perspectives. World J Gastroenterol 2018; 24:3313–3329. doi: 10.3748/wjg.v24.i30.3313.
doi: 10.3748/wjg.v24.i30.3313
Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet 2016; 388:2654–2664. doi: 10.1016/s0140-6736(16)30354-3.
doi: 10.1016/s0140-6736(16)30354-3
Hundahl SA, Phillips JL, Menck HR. The National Cancer Data Base Report on poor survival of U.S. gastric carcinoma patients treated with gastrectomy: Fifth Edition American Joint Committee on Cancer staging, proximal disease, and the “different disease” hypothesis. Cancer 2000; 88:921–932.
Zhang X, Li M, Chen S, Hu J, Guo Q, Liu R, et al. Endoscopic screening in Asian countries is associated with reduced gastric cancer mortality: a meta-analysis and systematic review. Gastroenterology 2018; 155:347–354.e9. doi: 10.1053/j.gastro.2018.04.026.
doi: 10.1053/j.gastro.2018.04.026
Zong L, Abe M, Seto Y, Ji J. The challenge of screening for early gastric cancer in China. Lancet 2016; 388:2606doi: 10.1016/s0140-6736(16)32226-7.
doi: 10.1016/s0140-6736(16)32226-7
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116:281–297. doi: 10.1016/s0092-8674(04)00045-5.
doi: 10.1016/s0092-8674(04)00045-5
Ambros V. The functions of animal microRNAs. Nature 2004; 431:350–355. doi: 10.1038/nature02871.
doi: 10.1038/nature02871
Shin VY, Chu KM. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol 2014; 20:10432–10439. doi: 10.3748/wjg.v20.i30.10432.
doi: 10.3748/wjg.v20.i30.10432
Hao NB, He YF, Li XQ, Wang K, Wang RL. The role of miRNA and lncRNA in gastric cancer. Oncotarget 2017; 8:81572–81582. doi: 10.18632/oncotarget.19197.
doi: 10.18632/oncotarget.19197
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435:834–838. doi: 10.1038/nature03702.
doi: 10.1038/nature03702
Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103:2257–2261. doi: 10.1073/pnas.0510565103.
doi: 10.1073/pnas.0510565103
Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 2010; 11:136–146. doi: 10.1016/S1470-2045(09)70343-2.
doi: 10.1016/s1470-2045(09)70343-2
Jinawath N, Furukawa Y, Hasegawa S, Li M, Tsunoda T, Satoh S, et al. Comparison of gene-expression profiles between diffuse- and intestinal-type gastric cancers using a genome-wide cDNA microarray. Oncogene 2004; 23:6830–6844. doi: 10.1038/sj.onc.1207886.
doi: 10.1038/sj.onc.1207886
Stock M, Otto F. Gene deregulation in gastric cancer. Gene 2005; 360:1–19. doi: 10.1016/j.gene.2005.06.026.
doi: 10.1016/j.gene.2005.06.026
Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6:259–269. doi: 10.1038/nrc1840.
doi: 10.1038/nrc1840
Oliveira KCD, Araujo TMT, Albuquerque CI, Barata GA, Gigek CO, Leal MF, et al. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J Gastroentero 2016; 22:7951–7962. doi: 10.3748/wjg.v22.i35.7951.
doi: 10.3748/wjg.v22.i35.7951
Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 2008; 88:1358–1366. doi: 10.1038/labinvest.2008.94.
doi: 10.1038/labinvest.2008.94
Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K, Mori M. Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res 2008; 14:2334–2340. doi: 10.1158/1078-0432.CCR-07-4667.
doi: 10.1158/1078-0432.ccr-07-4667
Hayashi Y, Tsujii M, Wang J, Kondo J, Akasaka T, Jin Y, et al. CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut 2013; 62:1536–1546. doi: 10.1136/gutjnl-2011-301625.
doi: 10.1136/gutjnl-2011-301625
Li W, Li J, Mu H, Guo M, Deng H. MiR-503 suppresses cell proliferation and invasion of gastric cancer by targeting HMGA2 and inactivating WNT signaling pathway. Cancer Cell Int 2019; 19:164doi: 10.1186/s12935-019-0875-1.
doi: 10.1186/s12935-019-0875-1
Huang T, Kang W, Zhang B, Wu F, Dong Y, Tong JH, et al. miR-508-3p concordantly silences NFKB1 and RELA to inactivate canonical NF-kappaB signaling in gastric carcinogenesis. Mol Cancer 2016; 15:9doi: 10.1186/s12943-016-0493-7.
doi: 10.1186/s12943-016-0493-7
Bai TL, Liu YB, Li BH. MiR-411 inhibits gastric cancer proliferation and migration through targeting SETD6. Eur Rev Med Pharmacol Sci 2019; 23:3344–3350. doi: 10.26355/eurrev_201904_17697.
doi: 10.26355/eurrev_201904_17697
Liu Z, Sun F, Hong Y, Liu Y, Fen M, Yin K, et al. MEG2 is regulated by miR-181a-5p and functions as a tumor suppressor gene to suppress the proliferation and migration of gastric cancer cells. Mol Cancer 2017; 16:133doi: 10.1186/s12943-017-0695-7.
doi: 10.1186/s12943-017-0695-7
Yuan T, Wang Y, Zhao ZJ, Gu H. Protein-tyrosine phosphatase PTPN9 negatively regulates ErbB2 and epidermal growth factor receptor signaling in breast cancer cells. J Biol Chem 2010; 285:14861–14870. doi: 10.1074/jbc.M109.099879.
doi: 10.1074/jbc.m109.099879
Wu Q, Luo GH, Yang ZP, Zhu F, An YX, Shi YQ, et al. miR-17-5p promotes proliferation by targeting SOCS6 in gastric cancer cells. Febs Lett 2014; 588:2055–2062. doi: 10.1016/j.febslet.2014.04.036.
doi: 10.1016/j.febslet.2014.04.036
Ni QF, Zhang Y, Yu JW, Hua RH, Wang QH, Zhu JW. miR-92b promotes gastric cancer growth by activating the DAB2IP-mediated PI3K/AKT signalling pathway. Cell Prolif 2020; 53:e12630doi: 10.1111/cpr.12630.
doi: 10.1111/cpr.12630
Wang L, Li B, Zhang L, Li Q, He Z, Zhang X, et al. miR-664a-3p functions as an oncogene by targeting Hippo pathway in the development of gastric cancer. Cell Prolif 2019; 52:e12567doi: 10.1111/cpr.12567.
doi: 10.1111/cpr.12567
Deng S, Zhang X, Qin Y, Chen W, Fan H, Feng X, et al. miRNA-192 and -215 activate Wnt/beta-catenin signaling pathway in gastric cancer via APC. J Cell Physiol 2020; [Epub ahead of print]. doi: 10.1002/jcp.29550.
doi: 10.1002/jcp.29550
Guo H, Ji F, Zhao X, Yang X, He J, Huang L, et al. MicroRNA-371a-3p promotes progression of gastric cancer by targeting TOB1. Cancer Lett 2019; 443:179–188. doi: 10.1016/j.canlet.2018.11.021.
doi: 10.1016/j.canlet.2018.11.021
Ding L, Li Q, Chakrabarti J, Munoz A, Faure-Kumar E, Ocadiz-Ruiz R, et al. MiR130b from Schlafen4(+) MDSCs stimulates epithelial proliferation and correlates with preneoplastic changes prior to gastric cancer. Gut 2020; [Epub ahead of print] doi: 10.1136/gutjnl-2019-318817.
doi: 10.1136/gutjnl-2019-318817
Matsuo M, Nakada C, Tsukamoto Y, Noguchi T, Uchida T, Hijiya N, et al. MiR-29c is downregulated in gastric carcinomas and regulates cell proliferation by targeting RCC2. Mol Cancer 2013; 12:15doi: 10.1186/1476-4598-12-15.
doi: 10.1186/1476-4598-12-15
Han TS, Hur K, Xu G, Choi B, Okugawa Y, Toiyama Y, et al. MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut 2015; 64:203–214. doi: 10.1136/gutjnl-2013-306640.
doi: 10.1136/gutjnl-2013-306640
Chu SJ, Wang G, Zhang PF, Zhang R, Huang YX, Lu YM, et al. MicroRNA-203 suppresses gastric cancer growth by targeting PIBF1/Akt signaling. J Exp Clin Cancer Res 2016; 35:47doi: 10.1186/s13046-016-0323-1.
doi: 10.1186/s13046-016-0323-1
Fang Z, Yin S, Sun RC, Zhang SX, Fu M, Wu YL, et al. miR-140-5p suppresses the proliferation, migration and invasion of gastric cancer by regulating YES1. Mol Cancer 2017; 16:139doi: 10.1186/s12943-017-0708-6.
doi: 10.1186/s12943-017-0708-6
Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, et al. Beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 2012; 151:1457–1473. doi: 10.1016/j.cell.2012.11.026.
doi: 10.1016/j.cell.2012.11.026
Lin L, Xiao J, Shi L, Chen W, Ge Y, Jiang M, et al. STRA6 exerts oncogenic role in gastric tumorigenesis by acting as a crucial target of miR-873. J Exp Clin Cancer Res 2019; 38:452doi: 10.1186/s13046-019-1450-2.
doi: 10.1186/s13046-019-1450-2
Li T, Guo HQ, Zhao XD, Jin J, Zhang LF, Li H, et al. Gastric cancer cell proliferation and survival is enabled by a cyclophilin B/STAT3/miR-520d-5p signaling feedback loop. Cancer Res 2017; 77:1227–1240. doi: 10.1158/0008-5472.Can-16-0357.
doi: 10.1158/0008-5472.can-16-0357
Min J, Han TS, Sohn Y, Shimizu T, Choi B, Bae SW, et al. microRNA-30a arbitrates intestinal-type early gastric carcinogenesis by directly targeting ITGA2. Gastric Cancer 2020; [Epub ahead of print]. doi: 10.1007/s10120-020-01052-w.
doi: 10.1007/s10120-020-01052-w
Jiang M, Shi L, Yang C, Ge Y, Lin L, Fan H, et al. miR-1254 inhibits cell proliferation, migration, and invasion by down-regulating Smurf1 in gastric cancer. Cell Death Dis 2019; 10:32doi: 10.1038/s41419-018-1262-x.
doi: 10.1038/s41419-018-1262-x
Xiao J, Lin L, Luo D, Shi L, Chen W, Fan H, et al. Long noncoding RNA TRPM2-AS acts as a microRNA sponge of miR-612 to promote gastric cancer progression and radioresistance. Oncogenesis 2020; 9:29doi: 10.1038/s41389-020-0215-2.
doi: 10.1038/s41389-020-0215-2
Deng G, Mou T, He J, Chen D, Lv D, Liu H, et al. Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. J Exp Clin Cancer Res 2020; 39:1doi: 10.1186/s13046-019-1487-2.
doi: 10.1186/s13046-019-1487-2
Zhang H, Duan J, Qu Y, Deng T, Liu R, Zhang L, et al. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer. Protein Cell 2016; 7:141–151. doi: 10.1007/s13238-015-0234-5.
doi: 10.1007/s13238-015-0234-5
Duan Y, Hu L, Liu B, Yu B, Li J, Yan M, et al. Tumor suppressor miR-24 restrains gastric cancer progression by downregulating RegIV. Mol Cancer 2014; 13:127doi: 10.1186/1476-4598-13-127.
doi: 10.1186/1476-4598-13-127
Wang M, Gu H, Qian H, Zhu W, Zhao C, Zhang X, et al. miR-17-5p/20a are important markers for gastric cancer and murine double minute 2 participates in their functional regulation. Eur J Cancer 2013; 49:2010–2021. doi: 10.1016/j.ejca.2012.12.017.
doi: 10.1016/j.ejca.2012.12.017
Xu Z, Li Z, Wang W, Xia Y, He Z, Li B, et al. MIR-1265 regulates cellular proliferation and apoptosis by targeting calcium binding protein 39 in gastric cancer and, thereby, impairing oncogenic autophagy. Cancer Lett 2019; 449:226–236. doi: 10.1016/j.canlet.2019.02.026.
doi: 10.1016/j.canlet.2019.02.026
Zhu Z, Yang Q, Zhang B, Wu W, Yuan F, Zhu Z. miR-106b promotes metastasis of early gastric cancer by targeting ALEX1 in vitro and in vivo. Cell Physiol Biochem 2019; 52:606–616. doi: 10.33594/000000043.
doi: 10.33594/000000043
Zhou J, Chen Q. Poor expression of microRNA-135b results in the inhibition of cisplatin resistance and proliferation and induces the apoptosis of gastric cancer cells through MST1-mediated MAPK signaling pathway. FASEB J 2019; 33:3420–3436. doi: 10.1096/fj.201800618RRR.
doi: 10.1096/fj.201800618rrr
Qiao F, Gong P, Song Y, Shen X, Su X, Li Y, et al. Downregulated PITX1 modulated by MiR-19a-3p promotes cell malignancy and predicts a poor prognosis of gastric cancer by affecting transcriptionally activated PDCD5. Cell Physiol Biochem 2018; 46:2215–2231. doi: 10.1159/000489590.
doi: 10.1159/000489590
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Farkhondeh T, Samarghandian S. Wnt-regulating microRNAs role in gastric cancer malignancy. Life Sci 2020; 250:117547doi: 10.1016/j.lfs.2020.117547.
doi: 10.1016/j.lfs.2020.117547
Peng Y, Zhang XJ, Ma Q, Yan RB, Qin Y, Zhao YQ, et al. MiRNA-194 activates the Wnt/beta-catenin signaling pathway in gastric cancer by targeting the negative Wnt regulator, SUFU. Cancer Lett 2017; 385:117–127. doi: 10.1016/j.canlet.2016.10.035.
doi: 10.1016/j.canlet.2016.10.035
Wang L, Yu T, Li W, Li M, Zuo Q, Zou Q, et al. The miR-29c-KIAA1199 axis regulates gastric cancer migration by binding with WBP11 and PTP4A3. Oncogene 2019; 38:3134–3150. doi: 10.1038/s41388-018-0642-0.
doi: 10.1038/s41388-018-0642-0
Kang W, Tong JH, Lung RW, Dong Y, Zhao J, Liang Q, et al. Targeting of YAP1 by microRNA-15a and microRNA-16-1 exerts tumor suppressor function in gastric adenocarcinoma. Mol Cancer 2015; 14:52doi: 10.1186/s12943-015-0323-3.
doi: 10.1186/s12943-015-0323-3
Kang W, Tong JH, Chan AW, Lee TL, Lung RW, Leung PP, et al. Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulation associates with poor prognosis. Clin Cancer Res 2011; 17:2130–2139. doi: 10.1158/1078-0432.CCR-10-2467.
doi: 10.1158/1078-0432.ccr-10-2467
Wang SM, Tie J, Wang WL, Hu SJ, Yin JP, Yi XF, et al. POU2F2-oriented network promotes human gastric cancer metastasis. Gut 2016; 65:1427–1430. doi: 10.1136/gutjnl-2014-308932.
doi: 10.1136/gutjnl-2014-308932
Ding L, Zhang S, Xu M, Zhang R, Sui P, Yang Q. MicroRNA-27a contributes to the malignant behavior of gastric cancer cells by directly targeting PH domain and leucine-rich repeat protein phosphatase 2. J Exp Clin Cancer Res 2017; 36:45doi: 10.1186/s13046-017-0516-2.
doi: 10.1186/s13046-017-0516-2
Zhang JX, Xu Y, Gao Y, Chen C, Zheng ZS, Yun M, et al. Decreased expression of miR-939 contributes to chemoresistance and metastasis of gastric cancer via dysregulation of SLC34A2 and Raf/MEK/ERK pathway. Mol Cancer 2017; 16:18doi: 10.1186/s12943-017-0586-y.
doi: 10.1186/s12943-017-0586-y
Wu Q, Yang Z, An Y, Hu H, Yin J, Zhang P, et al. MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumor suppressor MXD1. Cell Death Dis 2014; 5:e1144doi: 10.1038/cddis.2014.110.
doi: 10.1038/cddis.2014.110
Zhang F, Li K, Pan M, Li W, Wu J, Li M, et al. miR-589 promotes gastric cancer aggressiveness by a LIFR-PI3K/AKT-c-Jun regulatory feedback loop. J Exp Clin Cancer Res 2018; 37:152doi: 10.1186/s13046-018-0821-4.
doi: 10.1186/s13046-018-0821-4
Ye G, Huang K, Yu J, Zhao L, Zhu X, Yang Q, et al. MicroRNA-647 targets SRF-MYH9 axis to suppress invasion and metastasis of gastric cancer. Theranostics 2017; 7:3338–3353. doi: 10.7150/thno.20512.
doi: 10.7150/thno.20512
Yan J, Yang B, Lin S, Xing R, Lu Y. Downregulation of miR-142-5p promotes tumor metastasis through directly regulating CYR61 expression in gastric cancer. Gastric Cancer 2019; 22:302–313. doi: 10.1007/s10120-018-0872-4.
doi: 10.1007/s10120-018-0872-4
Zhou Y, Huang T, Siu HL, Wong CC, Dong Y, Wu F, et al. IGF2BP3 functions as a potential oncogene and is a crucial target of miR-34a in gastric carcinogenesis. Mol Cancer 2017; 16:77doi: 10.1186/s12943-017-0647-2.
doi: 10.1186/s12943-017-0647-2
Zhang X, Li Z, Xuan Z, Xu P, Wang W, Chen Z, et al. Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis. J Exp Clin Cancer Res 2018; 37:320doi: 10.1186/s13046-018-0993-y.
doi: 10.1186/s13046-018-0993-y
He C, Wang L, Zhang J, Xu H. Hypoxia-inducible microRNA-224 promotes the cell growth, migration and invasion by directly targeting RASSF8 in gastric cancer. Mol Cancer 2017; 16:35doi: 10.1186/s12943-017-0603-1.
doi: 10.1186/s12943-017-0603-1
Mousa H, Yuan M, Zhang X, Li X, Shopit A, Almoiliqy M, et al. MicroRNA-4316 inhibits gastric cancer proliferation and migration via directly targeting VEGF-A. Cancer Cell Int 2020; 20:62doi: 10.1186/s12935-020-1132-3.
doi: 10.1186/s12935-020-1132-3
Deng M, Liu B, Song H, Yu R, Zou D, Chen Y, et al. beta-Elemene inhibits the metastasis of multidrug-resistant gastric cancer cells through miR-1323/Cbl-b/EGFR pathway. Phytomedicine 2020; 69:153184doi: 10.1016/j.phymed.2020.153184.
doi: 10.1016/j.phymed.2020.153184
Ye TB, Yang MH, Huang DC, Wang X, Xue BQ, Tian N, et al. MicroRNA-7 as a potential therapeutic target for aberrant NF-kappa B-driven distant metastasis of gastric cancer. J Exp Clin Canc Res 2019; 38:55doi: 10.1186/s13046-019-1074-6.
doi: 10.1186/s13046-019-1074-6
Zhang HY, Bai M, Deng T, Liu R, Wang X, Qu YJ, et al. Cell-derived microvesicles mediate the delivery of miR-29a/c to suppress angiogenesis in gastric carcinoma. Cancer Lett 2016; 375:331–339. doi: 10.1016/j.canlet.2016.03.026.
doi: 10.1016/j.canlet.2016.03.026
Deng T, Zhang H, Yang H, Wang H, Bai M, Sun W, et al. Exosome miR-155 derived from gastric carcinoma promotes angiogenesis by targeting the c-MYB/VEGF axis of endothelial cells. Mol Ther Nucleic Acids 2020; 19:1449–1459. doi: 10.1016/j.omtn.2020.01.024.
doi: 10.1016/j.omtn.2020.01.024
Zhou Z, Zhang H, Deng T, Ning T, Liu R, Liu D, et al. Exosomes carrying microRNA-155 target forkhead box O3 of endothelial cells and promote angiogenesis in gastric cancer. Mol Ther Oncolytics 2019; 15:223–233. doi: 10.1016/j.omto.2019.10.006.
doi: 10.1016/j.omto.2019.10.006
Du J, Liang Y, Li J, Zhao JM, Wang ZN, Lin XY. Gastric cancer cell-derived exosomal microRNA-23a promotes angiogenesis by targeting PTEN. Front Oncol 2020; 10:326doi: 10.3389/fonc.2020.00326.
doi: 10.3389/fonc.2020.00326
Wang X, Chen X, Tian Y, Jiang D, Song Y. Long noncoding RNA RGMB-AS1 acts as a microRNA-574 sponge thereby enhancing the aggressiveness of gastric cancer via HDAC4 upregulation. Onco Targets Ther 2020; 13:1691–1704. doi: 10.2147/OTT.S234144.
doi: 10.2147/ott.s234144
Cao Y, Xiong JB, Zhang GY, Liu Y, Jie ZG, Li ZR. Long noncoding RNA UCA1 regulates PRL-3 expression by sponging microRNA-495 to promote the progression of gastric cancer. Mol Ther Nucleic Acids 2020; 19:853–864. doi: 10.1016/j.omtn.2019.10.020.
doi: 10.1016/j.omtn.2019.10.020
Wang S, Tang D, Wang W, Yang Y, Wu X, Wang L, et al. circLMTK2 acts as a sponge of miR-150-5p and promotes proliferation and metastasis in gastric cancer. Mol Cancer 2019; 18:162doi: 10.1186/s12943-019-1081-4.
doi: 10.1186/s12943-019-1081-4
Wang Y, Liu C, Luo M, Zhang Z, Gong J, Li J, et al. Chemotherapy-induced miRNA-29c/Catenin-delta signaling suppresses metastasis in gastric cancer. Cancer Res 2015; 75:1332–1344. doi: 10.1158/0008-5472.CAN-14-0787.
doi: 10.1158/0008-5472.can-14-0787
Li BW, Wang WZ, Li Z, Chen Z, Zhi XF, Xu JH, et al. MicroRNA-148a-3p enhances cisplatin cytotoxicity in gastric cancer through mitochondrial fission induction and cyto-protective autophagy suppression. Cancer Lett 2017; 410:212–227. doi: 10.1016/j.canlet.2017.09.035.
doi: 10.1016/j.canlet.2017.09.035
Chen Z, Li Z, Soutto M, Wang W, Piazuelo MB, Zhu S, et al. Integrated analysis of mouse and human gastric neoplasms identifies conserved microRNA networks in gastric carcinogenesis. Gastroenterology 2019; 156:1127–1139.e8. doi: 10.1053/j.gastro.2018.11.052.
doi: 10.1053/j.gastro.2018.11.052
Pang X, Zhou Z, Yu Z, Han L, Lin Z, Ao X, et al. FOXO3a-dependent miR-633 regulates chemotherapeutic sensitivity in gastric cancer by targeting Fas-associated death domain (vol 16, pg 233, 2019). RNA Biol 2019; 16:1074–1080. doi: 10.1080/15476286.2019.1565665.
doi: 10.1080/15476286.2019.1565665
Luo Y, Wu J, Wu Q, Li X, Wu J, Zhang J, et al. miR-577 regulates TGF-beta induced cancer progression through a SDPR-modulated positive-feedback loop with ERK-NF-kappaB in gastric cancer. Mol Ther 2019; 27:1166–1182. doi: 10.1016/j.ymthe.2019.02.002.
doi: 10.1016/j.ymthe.2019.02.002
Shang Y, Zhang Z, Liu Z, Feng B, Ren G, Li K, et al. miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene 2014; 33:3267–3276. doi: 10.1038/onc.2013.297.
doi: 10.1038/onc.2013.297
Shao L, Chen Z, Soutto M, Zhu S, Lu H, Romero-Gallo J, et al. Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer. FASEB J 2019; 33:264–274. doi: 10.1096/fj.201701456RR.
doi: 10.1096/fj.201701456rr
Zheng H, Wang JJ, Yang XR, Yu YL. Upregulation of miR-34c after silencing E2F transcription factor 1 inhibits paclitaxel combined with cisplatin resistance in gastric cancer cells. World J Gastroenterol 2020; 26:499–513. doi: 10.3748/wjg.v26.i5.499.
doi: 10.3748/wjg.v26.i5.499
Liu Q, Li RT, Qian HQ, Wei J, Xie L, Shen J, et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials 2013; 34:7191–7203. doi: 10.1016/j.biomaterials.2013.06.004.
doi: 10.1016/j.biomaterials.2013.06.004
Ji R, Zhang X, Gu H, Ma J, Wen X, Zhou J, et al. miR-374a-5p: a new target for diagnosis and drug resistance therapy in gastric cancer. Mol Ther Nucleic Acids 2019; 18:320–331. doi: 10.1016/j.omtn.2019.07.025.
doi: 10.1016/j.omtn.2019.07.025
Wang XY, Zhang HY, Bai M, Ning T, Ge SH, Deng T, et al. Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther 2018; 26:774–783. doi: 10.1016/j.ymthe.2018.01.001.
doi: 10.1016/j.ymthe.2018.01.001
Liu X, Lu Y, Xu Y, Hou S, Huang J, Wang B, et al. Exosomal transfer of miR-501 confers doxorubicin resistance and tumorigenesis via targeting of BLID in gastric cancer. Cancer Lett 2019; 459:122–134. doi: 10.1016/j.canlet.2019.05.035.
doi: 10.1016/j.canlet.2019.05.035
Li LQ, Pan D, Chen Q, Zhang SW, Xie DY, Zheng XL, et al. Sensitization of gastric cancer cells to 5-FU by microRNA-204 through targeting the TGFBR2-mediated epithelial to mesenchymal transition. Cell Physiol Biochem 2018; 47:1533–1545. doi: 10.1159/000490871.
doi: 10.1159/000490871
Zhang F, Li K, Yao X, Wang H, Li W, Wu J, et al. A miR-567-PIK3AP1-PI3K/AKT-c-Myc feedback loop regulates tumor growth and chemoresistance in gastric cancer. EBioMedicine 2019; 44:311–321. doi: 10.1016/j.ebiom.2019.05.003.
doi: 10.1016/j.ebiom.2019.05.003
Xu S, Li D, Li T, Qiao L, Li K, Guo L, et al. miR-494 sensitizes gastric cancer cells to TRAIL treatment through downregulation of survivin. Cell Physiol Biochem 2018; 51:2212–2223. doi: 10.1159/000495867.
doi: 10.1159/000495867
Wei B, Sun X, Geng Z, Shi M, Chen Z, Chen L, et al. Isoproterenol regulates CD44 expression in gastric cancer cells through STAT3/MicroRNA373 cascade. Biomaterials 2016; 105:89–101. doi: 10.1016/j.biomaterials.2016.07.040.
doi: 10.1016/j.biomaterials.2016.07.040
Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, et al. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer 2020; 19:62doi: 10.1186/s12943-020-01185-7.
doi: 10.1186/s12943-020-01185-7
Ma L, Wang Z, Xie M, Quan Y, Zhu W, Yang F, et al. Silencing of circRACGAP1 sensitizes gastric cancer cells to apatinib via modulating autophagy by targeting miR-3657 and ATG7. Cell Death Dis 2020; 11:169doi: 10.1038/s41419-020-2352-0.
doi: 10.1038/s41419-020-2352-0
Huang X, Li Z, Zhang Q, Wang W, Li B, Wang L, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer 2019; 18:71doi: 10.1186/s12943-019-0969-3.
doi: 10.1186/s12943-019-0969-3
Huang XX, Zhang Q, Hu H, Jin Y, Zeng AL, Xia YB, et al. A novel circular RNA circFN1 enhances cisplatin resistance in gastric cancer via sponging miR-182-5p. J Cell Biochem 2020; [Epub ahead of print]. doi: 10.1002/jcb.29641.
doi: 10.1002/jcb.29641
Liu YY, Zhang LY, Du WZ. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Biosci Rep 2019; 39: doi: 10.1042/BSR20193045.
doi: 10.1042/bsr20193045
Yan YM, Zuo XS, Wei DY. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cell Transl Med 2015; 4:1033–1043. doi: 10.5966/sctm.2015-0048.
doi: 10.5966/sctm.2015-0048
Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, et al. Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids 2014; 3:e194doi: 10.1038/mtna.2014.47.
doi: 10.1038/mtna.2014.47
Li XJ, Ren ZJ, Tang JH. MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death Dis 2014; 5:e1327doi: 10.1038/cddis.2014.270.
doi: 10.1038/cddis.2014.270
Jang E, Kim E, Son HY, Lim EK, Lee H, Choi Y, et al. Nanovesicle-mediated systemic delivery of microRNA-34a for CD44 overexpressing gastric cancer stem cell therapy. Biomaterials 2016; 105:12–24. doi: 10.1016/j.biomaterials.2016.07.036.
doi: 10.1016/j.biomaterials.2016.07.036
Li P, Shan JX, Chen XH, Zhang D, Su LP, Huang XY, et al. Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostaglandin E2/interleukin-6 signaling in the tumor microenvironment. Cell Res 2015; 25:588–603. doi: 10.1038/cr.2015.51.
doi: 10.1038/cr.2015.51
Wang X, Wang C, Zhang X, Hua R, Gan L, Huang M, et al. Bmi-1 regulates stem cell-like properties of gastric cancer cells via modulating miRNAs. J Hematol Oncol 2016; 9:90doi: 10.1186/s13045-016-0323-9.
doi: 10.1186/s13045-016-0323-9
Ni SJ, Zhao LQ, Wang XF, Wu ZH, Hua RX, Wan CH, et al. CBX7 regulates stem cell-like properties of gastric cancer cells via p16 and AKT-NF-kappaB-miR-21 pathways. J Hematol Oncol 2018; 11:17doi: 10.1186/s13045-018-0562-z.
doi: 10.1186/s13045-018-0562-z
Peng XD, Kang QJ, Wan R, Wang ZW. miR-26a/HOXC9 dysregulation promotes metastasis and stem cell-like phenotype of gastric cancer. Cell Physiol Biochem 2018; 49:1659–1676. doi: 10.1159/000493502.
doi: 10.1159/000493502
Fan D, Ren B, Yang X, Liu J, Zhang Z. Upregulation of miR-501-5p activates the wnt/beta-catenin signaling pathway and enhances stem cell-like phenotype in gastric cancer. J Exp Clin Cancer Res 2016; 35:177doi: 10.1186/s13046-016-0432-x.
doi: 10.1186/s13046-016-0432-x
Zhao M, Hou Y, Du YE, Yang L, Qin Y, Peng M, et al. Drosha-independent miR-6778-5p strengthens gastric cancer stem cell stemness via regulation of cytosolic one-carbon folate metabolism. Cancer Lett 2020; 478:8–21. doi: 10.1016/j.canlet.2020.02.040.
doi: 10.1016/j.canlet.2020.02.040
Han TS, Voon DC, Oshima H, Nakayama M, Echizen K, Sakai E, et al. Interleukin 1 up-regulates microRNA 135b to promote inflammation-associated gastric carcinogenesis in mice. Gastroenterology 2019; 156:1140–1155.e4. doi: 10.1053/j.gastro.2018.11.059.
doi: 10.1053/j.gastro.2018.11.059
Wu Q, Yang ZP, Wang F, Hu SJ, Yang L, Shi YQ, et al. MiR-19b/20a/92a regulates the self-renewal and proliferation of gastric cancer stem cells. J Cell Sci 2013; 126:4220–4229. doi: 10.1242/jcs.127944.
doi: 10.1242/jcs.127944
Li T, Guo H, Li H, Jiang Y, Zhuang K, Lei C, et al. MicroRNA-92a-1-5p increases CDX2 by targeting FOXD1 in bile acids-induced gastric intestinal metaplasia. Gut 2019; 68:1751–1763. doi: 10.1136/gutjnl-2017-315318.
doi: 10.1136/gutjnl-2017-315318
Wu H, Liu B, Chen Z, Li G, Zhang Z. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1alpha/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis 2020; 11:233doi: 10.1038/s41419-020-2426-z.
doi: 10.1038/s41419-020-2426-z
Prinz C, Weber D, Micro RNA. (miR) dysregulation during Helicobacter pylori-induced gastric inflammation and cancer development: critical importance of miR-155. Oncotarget 2020; 11:894–904. doi: 10.18632/oncotarget.27520.
doi: 10.18632/oncotarget.27520
Zhao XD, Lu YY, Guo H, Xie HH, He LJ, Shen GF, et al. MicroRNA-7/NF-kappaB signaling regulatory feedback circuit regulates gastric carcinogenesis. J Cell Biol 2015; 210:613–627. doi: 10.1083/jcb.201501073.
doi: 10.1083/jcb.201501073
Yang F, Xu Y, Liu C, Ma C, Zou S, Xu X, et al. NF-kappaB/miR-223-3p/ARID1A axis is involved in Helicobacter pylori CagA-induced gastric carcinogenesis and progression. Cell Death Dis 2018; 9:12doi: 10.1038/s41419-017-0020-9.
doi: 10.1038/s41419-017-0020-9
Li N, Wang J, Yu W, Dong K, You F, Si B, et al. MicroRNA146a inhibits the inflammatory responses induced by interleukin17A during the infection of Helicobacter pylori. Mol Med Rep 2019; 19:1388–1395. doi: 10.3892/mmr.2018.9725.
doi: 10.3892/mmr.2018.9725
Pachathundikandi SK, Blaser N, Backert S. Mechanisms of inflammasome signaling, microRNA induction and resolution of inflammation by Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:267–302. doi: 10.1007/978-3-030-15138-6_11.
doi: 10.1007/978-3-030-15138-6_11
Li S, Liang X, Ma L, Shen L, Li T, Zheng L, et al. MiR-22 sustains NLRP3 expression and attenuates H. pylori-induced gastric carcinogenesis. Oncogene 2018; 37:884–896. doi: 10.1038/onc.2017.381.
doi: 10.1038/onc.2017.381
Pachathundikandi SK, Backert S. Helicobacter pylori controls NLRP3 expression by regulating hsa-miR-223-3p and IL-10 in cultured and primary human immune cells. Innate Immun 2018; 24:11–23. doi: 10.1177/1753425917738043.
doi: 10.1177/1753425917738043
Zou M, Wang F, Jiang A, Xia A, Kong S, Gong C, et al. MicroRNA-3178 ameliorates inflammation and gastric carcinogenesis promoted by Helicobacter pylori new toxin, Tip-alpha, by targeting TRAF3. Helicobacter 2017; 22: doi: 10.1111/hel.12348.
doi: 10.1111/hel.12348
Blosse A, Levy M, Robe C, Staedel C, Copie-Bergman C, Lehours P. Deregulation of miRNA in Helicobacter pylori-induced gastric MALT lymphoma: from mice to human. J Clin Med 2019; 8: doi: 10.3390/jcm8060845.
doi: 10.3390/jcm8060845
Li X, Zhang Y, Zhang Y, Ding J, Wu K, Fan D. Survival prediction of gastric cancer by a seven-microRNA signature. Gut 2010; 59:579–585. doi: 10.1136/gut.2008.175497.
doi: 10.1136/gut.2008.175497
Yu L, Wu D, Gao H, Balic JJ, Tsykin A, Han TS, et al. Clinical utility of a STAT3-regulated miRNA-200 family signature with prognostic potential in early gastric cancer. Clin Cancer Res 2018; 24:1459–1472. doi: 10.1158/1078-0432.CCR-17-2485.
doi: 10.1158/1078-0432.ccr-17-2485
Kong Y, Ning L, Qiu F, Yu Q, Cao B. Clinical significance of serum miR-25 as a diagnostic and prognostic biomarker in human gastric cancer. Cancer Biomark 2019; 24:477–483. doi: 10.3233/Cbm-182213.
doi: 10.3233/cbm-182213
Zhu XL, Ren LF, Wang HP, Bai ZT, Zhang L, Meng WB, et al. Plasma microRNAs as potential new biomarkers for early detection of early gastric cancer. World J Gastroenterol 2019; 25:1580–1591. doi: 10.3748/wjg.v25.i13.1580.
doi: 10.3748/wjg.v25.i13.1580
Shimada H, Noie T, Ohashi M, Oba K, Takahashi Y. Clinical significance of serum tumor markers for gastric cancer: a systematic review of literature by the Task Force of the Japanese Gastric Cancer Association. Gastric Cancer 2014; 17:26–33. doi: 10.1007/s10120-013-0259-5.
doi: 10.1007/s10120-013-0259-5
Shin VY, Ng EK, Chan VW, Kwong A, Chu KM. A three-miRNA signature as promising non-invasive diagnostic marker for gastric cancer. Mol Cancer 2015; 14:202doi: 10.1186/s12943-015-0473-3.
doi: 10.1186/s12943-015-0473-3
Huang ZB, Zhu DX, Wu LR, He MF, Zhou X, Zhang L, et al. Six serum-based mirnas as potential diagnostic biomarkers for gastric cancer. Cancer Epidem Biomar 2017; 26:188–196. doi: 10.1158/1055-9965.Epi-16-0607.
doi: 10.1158/1055-9965.epi-16-0607
Cui L, Zhang XJ, Ye GL, Zheng T, Song HJ, Deng HX, et al. Gastric juice microRNAs as potential biomarkers for the screening of gastric cancer. Cancer 2013; 119:1618–1626. doi: 10.1002/cncr.27903.
doi: 10.1002/cncr.27903
Virgilio E, Giarnieri E, Giovagnoli MR, Montagnini M, Proietti A, D’Urso R, et al. Gastric juice microRNAs as potential biomarkers for screening gastric cancer: a systematic review. Anticancer Res 2018; 38:613–616. doi: 10.21873/anticanres.12265.
doi: 10.21873/anticanres.12265
Iwasaki H, Shimura T, Yamada T, Okuda Y, Natsume M, Kitagawa M, et al. A novel urinary microRNA biomarker panel for detecting gastric cancer. J Gastroenterol 2019; 54:1061–1069. doi: 10.1007/s00535-019-01601-w.
doi: 10.1007/s00535-019-01601-w
Zhang ZL, Sun JL, Bai ZH, Li HJ, He SC, Chen R, et al. MicroRNA-153 acts as a prognostic marker in gastric cancer and its role in cell migration and invasion. Oncotargets Ther 2015; 8:357–364. doi: 10.2147/Ott.S78236.
doi: 10.2147/ott.s78236
Yang X, Zhang Z, Zhang L, Zhou L. MicroRNA hsa-mir-3923 serves as a diagnostic and prognostic biomarker for gastric carcinoma. Sci Rep 2020; 10:4672doi: 10.1038/s41598-020-61633-8.
doi: 10.1038/s41598-020-61633-8
Chen J, Hu B, Wang W, Qian XJ, Shan BJ, He YF. A six-microRNA signature to predict outcomes of patients with gastric cancer. Febs Open Bio 2019; 9:538–547. doi: 10.1002/2211-5463.12593.
doi: 10.1002/2211-5463.12593
An JX, Ma ZS, Ma MH, Shao S, Cao FL, Dai DQ. MiR-1236-3p serves as a new diagnostic and prognostic biomarker for gastric cancer. Cancer Biomark 2019; 25:127–132. doi: 10.3233/CBM-171026.
doi: 10.3233/cbm-171026
Imaoka H, Toiyama Y, Okigami M, Yasuda H, Saigusa S, Ohi M, et al. Circulating microRNA-203 predicts metastases, early recurrence, and poor prognosis in human gastric cancer. Gastric Cancer 2016; 19:744–753. doi: 10.1007/s10120-015-0521-0.
doi: 10.1007/s10120-015-0521-0
Hou CG, Luo XY, Li G. Diagnostic and prognostic value of serum microRNA-206 in patients with gastric cancer. Cell Physiol Biochem 2016; 39:1512–1520. doi: 10.1159/000447854.
doi: 10.1159/000447854
Liu XY, Zhang XW, Zhang Z, Chang JJ, Wang ZC, Wu Z, et al. Plasma microRNA-based signatures to predict 3-year postoperative recurrence risk for stage II and III gastric cancer. Int J Cancer 2017; 141:2093–2102. doi: 10.1002/ijc.30895.
doi: 10.1002/ijc.30895
Nishibeppu K, Komatsu S, Imamura T, Kiuchi J, Kishimoto T, Arita T, et al. Plasma microRNA profiles: identification of miR-1229-3p as a novel chemoresistant and prognostic biomarker in gastric cancer. Sci Rep 2020; 10:3161doi: 10.1038/s41598-020-59939-8.
doi: 10.1038/s41598-020-59939-8
Pichler M, Calin GA. MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients. Brit J Cancer 2015; 113:569–573. doi: 10.1038/bjc.2015.253.
doi: 10.1038/bjc.2015.253
Farooqi AA, Fayyaz S, Shatynska-Mytsyk I, Javed Z, Jabeen S, Yaylim I, et al. Is miR-34a a well-equipped Swordsman to conquer temple of molecular oncology? Chem Biol Drug Des 2016; 87:321–334. doi: 10.1111/cbdd.12634.
doi: 10.1111/cbdd.12634
Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, et al. PDL1 regulation by p53 via miR-34. J Natl Cancer Inst 2016; 108: doi: 10.1093/jnci/djv303.
doi: 10.1093/jnci/djv303
Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 2017; 35:180–188. doi: 10.1007/s10637-016-0407-y.
doi: 10.1007/s10637-016-0407-y
Wei H, Pu K, Liu XG, Li BX, Zhang HS, Wang H, et al. The diagnostic value of circulating microRNAs as a biomarker for gastric cancer: a meta-analysis. Oncol Reports 2019; 41:87–102. doi: 10.3892/or.2018.6782.
doi: 10.3892/or.2018.6782
Tsujiura M, Komatsu S, Ichikawa D, Shiozaki A, Konishi H, Takeshita H, et al. Circulating miR-18a in plasma contributes to cancer detection and monitoring in patients with gastric cancer. Gastric Cancer 2015; 18:271–279. doi: 10.1007/s10120-014-0363-1.
doi: 10.1007/s10120-014-0363-1