Determination of the emission indices for NO, NO


Journal

Indoor air
ISSN: 1600-0668
Titre abrégé: Indoor Air
Pays: England
ID NLM: 9423515

Informations de publication

Date de publication:
01 2021
Historique:
received: 19 11 2019
revised: 26 06 2020
accepted: 01 07 2020
pubmed: 11 7 2020
medline: 1 10 2021
entrez: 11 7 2020
Statut: ppublish

Résumé

In the present study, emission indices for NO, NO

Identifiants

pubmed: 32650352
doi: 10.1111/ina.12714
doi:

Substances chimiques

Air Pollutants 0
Particulate Matter 0
Nitric Oxide 31C4KY9ESH
Carbon Monoxide 7U1EE4V452
Nitrogen Dioxide S7G510RUBH
Nitrous Acid T2I5UM75DN

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

116-127

Informations de copyright

© 2020 The Authors. Indoor Air published by John Wiley & Sons Ltd.

Références

Collins DB, Hems RF, Zhou S, et al. Evidence for gas - surface equilibrium control of indoor nitrous acid. Environ Sci Technol. 2018;52:12419-12427.
Englert N. Richtwerte für die Innenraumluft: Stickstoffdioxid. Bundesgesundheitsblatt. 1998;41:9-12.
Finlayson-Pitts BJ, Pitts JN. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. San Diego, CA: Academic Press; 2000.
Loupa G, Rapsomanikis S. Air pollutant emission rates and concentrations in medieval churches. J Atmos Chem. 2008;60:169-187.
Bartolomei V, Gómez Alvarez E, Wittmer J, et al. Combustion processes as a source of high levels of indoor hydroxyl radicals through the photolysis of nitrous acid. Environ Sci Technol. 2015;49:6599-6607.
Fine PM, Cass GR, Simoneit BRT. Characterization of fine particle emissions from burning church candles. Environ Sci Technol. 1999;33:2352-2362.
Knight L, Levin A, Mendenhall C. Candles and incense as potential sources of indoor air pollution: market analysis and literature review. Washington, DC: United States Environmental Protection Agency, Office of Research and Development; 2001.
Manoukian A, Quivet E, Temime-Roussel B, Nicolas M, Maupetit F, Wortham H. Emission characteristics of air pollutants from incense and candle burning in indoor atmospheres. Environ Sci Pollut Res Int. 2013;20:4659-4670.
Derudi M, Gelosa S, Sliepcevich A, et al. Emission of air pollutants from burning candles with different composition in indoor environments. Environ Sci Pollut Res Int. 2014;21:4320-4330.
Chuang H-C, Jones T, BéruBé K. Combustion particles emitted during church services: implications for human respiratory health. Environ Int. 2012;40:137-142.
Nriagu JO, Kim M-J. Emissions of lead and zinc from candles with metal-core wicks. Sci Total Environ. 2000;250:37-41.
Van Alphen M. Emission testing and inhalational exposure-based risk assessment for candles having Pb metal wick cores. Sci Total Environ. 1999;244:53-65.
Wasson SJ, Guo Z, McBrian JA, Beach LO. Lead in candle emissions. Sci Total Environ. 2002;296:159-174.
Sobel HL, Lurie PM, Wolfe SM. Lead exposure from candles. JAMA. 2000;284:180-181.
Pagels J, Wierzbicka A, Nilsson E, et al. Chemical composition and mass emission factors of candle smoke particles. J Aerosol Sci. 2009;40:193-208.
Orecchio S. Polycyclic aromatic hydrocarbons (PAHs) in indoor emission from decorative candles. Atmos. Environ. 2011;45:1888-1895.
Derudi M, Gelosa S, Sliepcevich A, et al. Emissions of air pollutants from scented candles burning in a test chamber. Atmos Environ. 2012;55:257-262.
Fan C-W, Zhang J. Characterization of emissions from portable household combustion devices: particle size distributions, emission rates and factors, and potential exposures. Atmos Environ. 2001;35:1281-1290.
Lau C, Fiedler H, Hutzinger O, Schwind K-H, Hosseinpour J. Levels of selected organic compounds in materials for candle production and human exposure to candle emissions. Chemosphere. 1997;34:1623-1630.
Li W, Hopke PK. Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosol Sci Technol. 1993;19:305-316.
Huynh CK, Savolainen H, Vu-Duc T, Guillemin M, Iselin F. Impact of thermal proofing of a church on its indoor air quality: the combustion of candles and incense as a source of pollution. Sci Total Environ. 1991;102:241-251.
Lee S-C, Wang B. Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber. Atmos Environ. 2006;40:2128-2138.
Zai S, Zhen H, Jia-song W. Studies on the size distribution, number and mass emission factors of candle particles characterized by modes of burning. J Aerosol Sci. 2006;37:1484-1496.
Afshari A, Matson U, Ekberg LE. Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air. 2005;15:141-150.
Wallace L, Jeong S-G, Rim D. Dynamic behavior of indoor ultrafine particles (2.3-64 nm) due to burning candles in a residence. Indoor Air. 2019;29:1018-1027.
Eco Physics AG. PAG 003. 2012. https://www.ecophysics.de/images/stories/eco/ep/leaflets/accessories/pag003-4.pdf. Accessed August 29, 2018.
Villena G, Bejan I, Kurtenbach R, Wiesen P, Kleffmann J. Interferences of commercial NO2 instruments in the urban atmosphere and in a smog-chamber. Atmos Meas Tech. 2012;5:149-159.
Heland J, Kleffmann J, Kurtenbach R, Wiesen P. A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere. Environ Sci Technol. 2001;35:3207-3212.
Kleffmann J, Lörzer JC, Wiesen P, et al. Intercomparison of the DOAS and LOPAP techniques for the detection of nitrous acid (HONO). Atmos Environ. 2006;40:3640-3652.
Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953;55:416-421.
Hak C, Pundt I, Trick S, et al. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air. Atmos Chem Phys. 2005;5:2881-2900.
Hermann M. Numerik gewöhnlicher Differentialgleichungen: Anfangs- und Randwertprobleme, 1st ed. München, Gerrmany: Oldenbourg; 2004.
Atkinson R, Baulch DL, Cox RA, et al. Evaluated kinetic and photochemical data for atmospheric chemistry: volume I - gas phase reactions of Ox, HOx, NOx and SOx species. Atmos Chem Phys. 2004;4:1461-1738.
Imhof D, Weingartner E, Prévôt ASH, et al. Aerosol and NOx emission factors and submicron particle number size distributions in two tunnels with different traffic regimes. Atmos Chem Phys. 2006;6:1-16.
Kurtenbach R, Becker KH, Gomes JAG, et al. Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel. Atmos Environ. 2001;35:3385-3394.
Liang Y, Zha Q, Wang W, et al. Revisiting nitrous acid (HONO) emission from on-road vehicles: a tunnel study with a mixed fleet. J Air Waste Manag Assoc. 2017;67:797-805.
Ammann M, Kalberer M, Jost DT, et al. Heterogeneous production of nitrous acid on soot in polluted air masses. Nature. 1998;395:157-160.
Kleffmann J, Becker KH, Lackhoff M, Wiesen P. Heterogeneous conversion of NO2 on carbonaceous surfaces. Phys Chem Chem Phys. 1999;1:5443-5450.
Gerasimtschuk E, Kurtenbach R, Echavarría García MA, Kleffmann J, Wiesen P. Distribution of Air Pollution Inside the Cologne Cathedral. Wuppertal, Germany; 2019. Manuscript in preparation.
Finlayson-Pitts BJ, Wingen LM, Sumner AL, Syomin D, Ramazan KA. The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys Chem Chem Phys. 2003;5:223-242.
Gómez Alvarez E, Amedro D, Afif C, et al. Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid. Proc Natl Acad Sci USA. 2013;110:13294-13299.
Stieß M. Mechanische Verfahrenstechnik - Partikeltechnologie 1, 3rd edn. Berlin, Heidelberg, Germany: Springer, Berlin Heidelberg; 2009.
LANUV Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen. Gesundheitliche Wirkungen von Feinstaub und Stickstoffdioxid im Zusammenhang mit der Luftreinhalteplanung. 2010. https://www.lanuv.nrw.de/fileadmin/lanuv/gesundheit/schadstoffe/gesundheitliche_wirkungen.pdf. Accessed September 18, 2019.
Technische Regeln für Gefahrstoffe, Arbeitsplatzgrenzwerte, TSRG 900. BArBl. 2006;41-55.

Auteurs

Anja Klosterköther (A)

Institute for Atmospheric and Environmental Research, Bergische Universität Wuppertal, Wuppertal, Germany.

Ralf Kurtenbach (R)

Institute for Atmospheric and Environmental Research, Bergische Universität Wuppertal, Wuppertal, Germany.

Peter Wiesen (P)

Institute for Atmospheric and Environmental Research, Bergische Universität Wuppertal, Wuppertal, Germany.

Jörg Kleffmann (J)

Institute for Atmospheric and Environmental Research, Bergische Universität Wuppertal, Wuppertal, Germany.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
Animals Osteogenesis Osteoporosis Mesenchymal Stem Cells Humans
Animals Sildenafil Citrate Cat Diseases Cyclic GMP Female
Humans Male Female Cross-Sectional Studies Middle Aged

Classifications MeSH