Determination of the emission indices for NO, NO
candle emissions
indoor air pollution
modeling
nitrogen oxides
nitrous acid
particulate matter
Journal
Indoor air
ISSN: 1600-0668
Titre abrégé: Indoor Air
Pays: England
ID NLM: 9423515
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
19
11
2019
revised:
26
06
2020
accepted:
01
07
2020
pubmed:
11
7
2020
medline:
1
10
2021
entrez:
11
7
2020
Statut:
ppublish
Résumé
In the present study, emission indices for NO, NO
Substances chimiques
Air Pollutants
0
Particulate Matter
0
Nitric Oxide
31C4KY9ESH
Carbon Monoxide
7U1EE4V452
Nitrogen Dioxide
S7G510RUBH
Nitrous Acid
T2I5UM75DN
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
116-127Informations de copyright
© 2020 The Authors. Indoor Air published by John Wiley & Sons Ltd.
Références
Collins DB, Hems RF, Zhou S, et al. Evidence for gas - surface equilibrium control of indoor nitrous acid. Environ Sci Technol. 2018;52:12419-12427.
Englert N. Richtwerte für die Innenraumluft: Stickstoffdioxid. Bundesgesundheitsblatt. 1998;41:9-12.
Finlayson-Pitts BJ, Pitts JN. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. San Diego, CA: Academic Press; 2000.
Loupa G, Rapsomanikis S. Air pollutant emission rates and concentrations in medieval churches. J Atmos Chem. 2008;60:169-187.
Bartolomei V, Gómez Alvarez E, Wittmer J, et al. Combustion processes as a source of high levels of indoor hydroxyl radicals through the photolysis of nitrous acid. Environ Sci Technol. 2015;49:6599-6607.
Fine PM, Cass GR, Simoneit BRT. Characterization of fine particle emissions from burning church candles. Environ Sci Technol. 1999;33:2352-2362.
Knight L, Levin A, Mendenhall C. Candles and incense as potential sources of indoor air pollution: market analysis and literature review. Washington, DC: United States Environmental Protection Agency, Office of Research and Development; 2001.
Manoukian A, Quivet E, Temime-Roussel B, Nicolas M, Maupetit F, Wortham H. Emission characteristics of air pollutants from incense and candle burning in indoor atmospheres. Environ Sci Pollut Res Int. 2013;20:4659-4670.
Derudi M, Gelosa S, Sliepcevich A, et al. Emission of air pollutants from burning candles with different composition in indoor environments. Environ Sci Pollut Res Int. 2014;21:4320-4330.
Chuang H-C, Jones T, BéruBé K. Combustion particles emitted during church services: implications for human respiratory health. Environ Int. 2012;40:137-142.
Nriagu JO, Kim M-J. Emissions of lead and zinc from candles with metal-core wicks. Sci Total Environ. 2000;250:37-41.
Van Alphen M. Emission testing and inhalational exposure-based risk assessment for candles having Pb metal wick cores. Sci Total Environ. 1999;244:53-65.
Wasson SJ, Guo Z, McBrian JA, Beach LO. Lead in candle emissions. Sci Total Environ. 2002;296:159-174.
Sobel HL, Lurie PM, Wolfe SM. Lead exposure from candles. JAMA. 2000;284:180-181.
Pagels J, Wierzbicka A, Nilsson E, et al. Chemical composition and mass emission factors of candle smoke particles. J Aerosol Sci. 2009;40:193-208.
Orecchio S. Polycyclic aromatic hydrocarbons (PAHs) in indoor emission from decorative candles. Atmos. Environ. 2011;45:1888-1895.
Derudi M, Gelosa S, Sliepcevich A, et al. Emissions of air pollutants from scented candles burning in a test chamber. Atmos Environ. 2012;55:257-262.
Fan C-W, Zhang J. Characterization of emissions from portable household combustion devices: particle size distributions, emission rates and factors, and potential exposures. Atmos Environ. 2001;35:1281-1290.
Lau C, Fiedler H, Hutzinger O, Schwind K-H, Hosseinpour J. Levels of selected organic compounds in materials for candle production and human exposure to candle emissions. Chemosphere. 1997;34:1623-1630.
Li W, Hopke PK. Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosol Sci Technol. 1993;19:305-316.
Huynh CK, Savolainen H, Vu-Duc T, Guillemin M, Iselin F. Impact of thermal proofing of a church on its indoor air quality: the combustion of candles and incense as a source of pollution. Sci Total Environ. 1991;102:241-251.
Lee S-C, Wang B. Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber. Atmos Environ. 2006;40:2128-2138.
Zai S, Zhen H, Jia-song W. Studies on the size distribution, number and mass emission factors of candle particles characterized by modes of burning. J Aerosol Sci. 2006;37:1484-1496.
Afshari A, Matson U, Ekberg LE. Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air. 2005;15:141-150.
Wallace L, Jeong S-G, Rim D. Dynamic behavior of indoor ultrafine particles (2.3-64 nm) due to burning candles in a residence. Indoor Air. 2019;29:1018-1027.
Eco Physics AG. PAG 003. 2012. https://www.ecophysics.de/images/stories/eco/ep/leaflets/accessories/pag003-4.pdf. Accessed August 29, 2018.
Villena G, Bejan I, Kurtenbach R, Wiesen P, Kleffmann J. Interferences of commercial NO2 instruments in the urban atmosphere and in a smog-chamber. Atmos Meas Tech. 2012;5:149-159.
Heland J, Kleffmann J, Kurtenbach R, Wiesen P. A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere. Environ Sci Technol. 2001;35:3207-3212.
Kleffmann J, Lörzer JC, Wiesen P, et al. Intercomparison of the DOAS and LOPAP techniques for the detection of nitrous acid (HONO). Atmos Environ. 2006;40:3640-3652.
Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953;55:416-421.
Hak C, Pundt I, Trick S, et al. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air. Atmos Chem Phys. 2005;5:2881-2900.
Hermann M. Numerik gewöhnlicher Differentialgleichungen: Anfangs- und Randwertprobleme, 1st ed. München, Gerrmany: Oldenbourg; 2004.
Atkinson R, Baulch DL, Cox RA, et al. Evaluated kinetic and photochemical data for atmospheric chemistry: volume I - gas phase reactions of Ox, HOx, NOx and SOx species. Atmos Chem Phys. 2004;4:1461-1738.
Imhof D, Weingartner E, Prévôt ASH, et al. Aerosol and NOx emission factors and submicron particle number size distributions in two tunnels with different traffic regimes. Atmos Chem Phys. 2006;6:1-16.
Kurtenbach R, Becker KH, Gomes JAG, et al. Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel. Atmos Environ. 2001;35:3385-3394.
Liang Y, Zha Q, Wang W, et al. Revisiting nitrous acid (HONO) emission from on-road vehicles: a tunnel study with a mixed fleet. J Air Waste Manag Assoc. 2017;67:797-805.
Ammann M, Kalberer M, Jost DT, et al. Heterogeneous production of nitrous acid on soot in polluted air masses. Nature. 1998;395:157-160.
Kleffmann J, Becker KH, Lackhoff M, Wiesen P. Heterogeneous conversion of NO2 on carbonaceous surfaces. Phys Chem Chem Phys. 1999;1:5443-5450.
Gerasimtschuk E, Kurtenbach R, Echavarría García MA, Kleffmann J, Wiesen P. Distribution of Air Pollution Inside the Cologne Cathedral. Wuppertal, Germany; 2019. Manuscript in preparation.
Finlayson-Pitts BJ, Wingen LM, Sumner AL, Syomin D, Ramazan KA. The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys Chem Chem Phys. 2003;5:223-242.
Gómez Alvarez E, Amedro D, Afif C, et al. Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid. Proc Natl Acad Sci USA. 2013;110:13294-13299.
Stieß M. Mechanische Verfahrenstechnik - Partikeltechnologie 1, 3rd edn. Berlin, Heidelberg, Germany: Springer, Berlin Heidelberg; 2009.
LANUV Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen. Gesundheitliche Wirkungen von Feinstaub und Stickstoffdioxid im Zusammenhang mit der Luftreinhalteplanung. 2010. https://www.lanuv.nrw.de/fileadmin/lanuv/gesundheit/schadstoffe/gesundheitliche_wirkungen.pdf. Accessed September 18, 2019.
Technische Regeln für Gefahrstoffe, Arbeitsplatzgrenzwerte, TSRG 900. BArBl. 2006;41-55.