Strong ergodicity breaking in aging of mean-field spin glasses.

off-equilibrium dynamics phase transitions spin glasses

Journal

Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876

Informations de publication

Date de publication:
28 Jul 2020
Historique:
pubmed: 12 7 2020
medline: 12 7 2020
entrez: 12 7 2020
Statut: ppublish

Résumé

Out-of-equilibrium relaxation processes show aging if they become slower as time passes. Aging processes are ubiquitous and play a fundamental role in the physics of glasses and spin glasses and in other applications (e.g., in algorithms minimizing complex cost/loss functions). The theory of aging in the out-of-equilibrium dynamics of mean-field spin glass models has achieved a fundamental role, thanks to the asymptotic analytic solution found by Cugliandolo and Kurchan. However, this solution is based on assumptions (e.g., the weak ergodicity breaking hypothesis) which have never been put under a strong test until now. In the present work, we present the results of an extraordinary large set of numerical simulations of the prototypical mean-field spin glass models, namely the Sherrington-Kirkpatrick and the Viana-Bray models. Thanks to a very intensive use of graphics processing units (GPUs), we have been able to run the latter model for more than [Formula: see text] spin updates and thus safely extrapolate the numerical data both in the thermodynamical limit and in the large times limit. The measurements of the two-times correlation functions in isothermal aging after a quench from a random initial configuration to a temperature [Formula: see text] provides clear evidence that, at large times, such correlations do not decay to zero as expected by assuming weak ergodicity breaking. We conclude that strong ergodicity breaking takes place in mean-field spin glasses aging dynamics which, asymptotically, takes place in a confined configurational space. Theoretical models for the aging dynamics need to be revised accordingly.

Identifiants

pubmed: 32651276
pii: 1910936117
doi: 10.1073/pnas.1910936117
pmc: PMC7395456
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

17522-17527

Déclaration de conflit d'intérêts

The authors declare no competing interest.

Références

Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1838-1843
pubmed: 28174274
Phys Rev Lett. 1993 Jul 5;71(1):173-176
pubmed: 10054401
Philos Trans A Math Phys Eng Sci. 2003 Apr 15;361(1805):781-91; discussion 791-2
pubmed: 12871625
Phys Rev Lett. 2002 Jun 24;88(25 Pt 1):257202
pubmed: 12097124
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1850-5
pubmed: 22315418
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):012146
pubmed: 25122290

Auteurs

Massimo Bernaschi (M)

Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy.

Alain Billoire (A)

Institut de Physique Théorique, Université Paris Saclay, CNRS, Commissariat à l'énergie atomique et aux énergies alternatives, F-91191, Gif-sur-Yvette, France.

Andrea Maiorano (A)

Dipartimento di Fisica, Sapienza Università di Roma, 00185 Roma, Italy.
Insituto de Biocomputación y Física de Sistemas Complejos, 50018 Zaragoza, Spain.
Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, 00185 Roma, Italy.
Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.

Giorgio Parisi (G)

Dipartimento di Fisica, Sapienza Università di Roma, 00185 Roma, Italy.
Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, 00185 Roma, Italy.
Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy.

Federico Ricci-Tersenghi (F)

Dipartimento di Fisica, Sapienza Università di Roma, 00185 Roma, Italy; giorgio.parisi@roma1.infn.it federico.ricci@uniroma1.it.
Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, 00185 Roma, Italy.
Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy.

Classifications MeSH